© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 919Visit 919's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 919's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,10,6,11 X3948 X9,3,10,2 X13,16,14,17 X7,15,8,14 X15,7,16,6 X11,18,12,1 X17,12,18,13 |
Gauss Code: | {-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 14 2 18 16 6 12 |
Minimum Braid Representative:
Length is 10, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-2 - 10t-1 + 17 - 10t + 2t2 |
Conway Polynomial: | 1 - 2z2 + 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {41, 0} |
Jones Polynomial: | - q-5 + 3q-4 - 4q-3 + 6q-2 - 7q-1 + 7 - 6q + 4q2 - 2q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-16 + q-14 + q-12 - q-10 + 2q-8 + q-2 - 1 + q2 - 2q4 + q8 - q10 + q12 + q14 |
HOMFLY-PT Polynomial: | a-4 - a-2 - 2a-2z2 + z4 + a2 + a2z2 + a2z4 - a4z2 |
Kauffman Polynomial: | a-4 - 2a-4z2 + a-4z4 + a-3z - 3a-3z3 + 2a-3z5 + a-2 - 3a-2z2 + 2a-2z6 - a-1z + a-1z3 - a-1z5 + 2a-1z7 + 3z2 - 4z4 + 2z6 + z8 - 3az + 10az3 - 11az5 + 5az7 - a2 + 8a2z2 - 11a2z4 + 3a2z6 + a2z8 - a3z + 4a3z3 - 7a3z5 + 3a3z7 + 4a4z2 - 8a4z4 + 3a4z6 - 2a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-2, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 919. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 3q-14 + 9q-12 - 10q-11 - 6q-10 + 23q-9 - 14q-8 - 19q-7 + 38q-6 - 13q-5 - 33q-4 + 47q-3 - 9q-2 - 40q-1 + 45 - 3q - 35q2 + 31q3 + q4 - 21q5 + 15q6 + q7 - 8q8 + 5q9 - 2q11 + q12 |
3 | - q-30 + 3q-29 - 5q-27 - 4q-26 + 10q-25 + 12q-24 - 16q-23 - 22q-22 + 16q-21 + 39q-20 - 13q-19 - 55q-18 - q-17 + 75q-16 + 14q-15 - 83q-14 - 41q-13 + 97q-12 + 61q-11 - 97q-10 - 88q-9 + 100q-8 + 106q-7 - 95q-6 - 124q-5 + 89q-4 + 135q-3 - 79q-2 - 139q-1 + 66 + 135q - 49q2 - 123q3 + 32q4 + 106q5 - 19q6 - 82q7 + 8q8 + 58q9 - q10 - 40q11 + 2q12 + 22q13 - 14q15 + 3q16 + 6q17 - q18 - 5q19 + 3q20 + q21 - 2q23 + q24 |
4 | q-50 - 3q-49 + 5q-47 + 4q-45 - 17q-44 - 5q-43 + 17q-42 + 8q-41 + 28q-40 - 47q-39 - 36q-38 + 19q-37 + 23q-36 + 98q-35 - 60q-34 - 87q-33 - 30q-32 - 2q-31 + 210q-30 - 6q-29 - 102q-28 - 125q-27 - 115q-26 + 295q-25 + 107q-24 - 20q-23 - 206q-22 - 306q-21 + 299q-20 + 219q-19 + 141q-18 - 225q-17 - 507q-16 + 231q-15 + 287q-14 + 319q-13 - 191q-12 - 663q-11 + 138q-10 + 310q-9 + 460q-8 - 133q-7 - 748q-6 + 42q-5 + 294q-4 + 546q-3 - 60q-2 - 746q-1 - 49 + 225q + 555q2 + 35q3 - 635q4 - 119q5 + 104q6 + 470q7 + 119q8 - 436q9 - 125q10 - 18q11 + 305q12 + 142q13 - 225q14 - 70q15 - 76q16 + 141q17 + 99q18 - 88q19 - 7q20 - 63q21 + 43q22 + 42q23 - 32q24 + 19q25 - 29q26 + 9q27 + 10q28 - 15q29 + 16q30 - 8q31 + 2q32 + q33 - 7q34 + 6q35 - q36 + q37 - 2q39 + q40 |
5 | - q-75 + 3q-74 - 5q-72 + 3q-69 + 10q-68 + 5q-67 - 17q-66 - 18q-65 - 5q-64 + 12q-63 + 36q-62 + 32q-61 - 13q-60 - 65q-59 - 59q-58 - 3q-57 + 69q-56 + 114q-55 + 58q-54 - 73q-53 - 165q-52 - 126q-51 + 19q-50 + 183q-49 + 240q-48 + 82q-47 - 172q-46 - 322q-45 - 238q-44 + 62q-43 + 388q-42 + 429q-41 + 104q-40 - 351q-39 - 618q-38 - 381q-37 + 264q-36 + 757q-35 + 667q-34 - 25q-33 - 843q-32 - 1011q-31 - 232q-30 + 837q-29 + 1278q-28 + 604q-27 - 761q-26 - 1558q-25 - 931q-24 + 622q-23 + 1732q-22 + 1293q-21 - 449q-20 - 1891q-19 - 1584q-18 + 264q-17 + 1973q-16 + 1859q-15 - 88q-14 - 2032q-13 - 2067q-12 - 87q-11 + 2053q-10 + 2243q-9 + 241q-8 - 2035q-7 - 2367q-6 - 402q-5 + 1971q-4 + 2453q-3 + 564q-2 - 1857q-1 - 2472 - 734q + 1667q2 + 2429q3 + 902q4 - 1411q5 - 2310q6 - 1034q7 + 1100q8 + 2086q9 + 1127q10 - 752q11 - 1794q12 - 1148q13 + 431q14 + 1431q15 + 1080q16 - 143q17 - 1053q18 - 947q19 - 67q20 + 718q21 + 752q22 + 174q23 - 412q24 - 555q25 - 224q26 + 217q27 + 370q28 + 191q29 - 71q30 - 222q31 - 160q32 + 16q33 + 116q34 + 100q35 + 25q36 - 56q37 - 68q38 - 14q39 + 15q40 + 27q41 + 28q42 - 5q43 - 21q44 - 4q45 - 5q46 - 2q47 + 14q48 + 4q49 - 6q50 + 2q51 - 3q52 - 5q53 + 4q54 + 2q55 - q56 + q57 - 2q59 + q60 |
6 | q-105 - 3q-104 + 5q-102 - 7q-99 + 4q-98 - 10q-97 - 5q-96 + 26q-95 + 9q-94 + 6q-93 - 26q-92 - q-91 - 43q-90 - 28q-89 + 64q-88 + 52q-87 + 56q-86 - 38q-85 + 7q-84 - 140q-83 - 139q-82 + 58q-81 + 107q-80 + 196q-79 + 49q-78 + 143q-77 - 224q-76 - 365q-75 - 152q-74 - 15q-73 + 268q-72 + 228q-71 + 601q-70 + 6q-69 - 415q-68 - 498q-67 - 525q-66 - 157q-65 + 60q-64 + 1182q-63 + 767q-62 + 262q-61 - 366q-60 - 1073q-59 - 1268q-58 - 1078q-57 + 1079q-56 + 1543q-55 + 1773q-54 + 933q-53 - 712q-52 - 2394q-51 - 3171q-50 - 405q-49 + 1297q-48 + 3298q-47 + 3279q-46 + 1183q-45 - 2470q-44 - 5286q-43 - 3019q-42 - 491q-41 + 3790q-40 + 5691q-39 + 4217q-38 - 1100q-37 - 6442q-36 - 5756q-35 - 3310q-34 + 2976q-33 + 7270q-32 + 7355q-31 + 1157q-30 - 6448q-29 - 7790q-28 - 6164q-27 + 1419q-26 + 7871q-25 + 9815q-24 + 3411q-23 - 5790q-22 - 8972q-21 - 8380q-20 - 143q-19 + 7868q-18 + 11426q-17 + 5152q-16 - 4989q-15 - 9555q-14 - 9859q-13 - 1401q-12 + 7589q-11 + 12358q-10 + 6408q-9 - 4130q-8 - 9712q-7 - 10799q-6 - 2533q-5 + 6961q-4 + 12695q-3 + 7437q-2 - 2914q-1 - 9251 - 11252q - 3831q2 + 5616q3 + 12163q4 + 8234q5 - 1079q6 - 7759q7 - 10853q8 - 5164q9 + 3355q10 + 10321q11 + 8292q12 + 1061q13 - 5123q14 - 9126q15 - 5842q16 + 693q17 + 7201q18 + 7062q19 + 2590q20 - 2076q21 - 6201q22 - 5230q23 - 1278q24 + 3756q25 + 4727q26 + 2796q27 + 165q28 - 3125q29 - 3543q30 - 1859q31 + 1243q32 + 2314q33 + 1922q34 + 999q35 - 1019q36 - 1763q37 - 1384q38 + 116q39 + 752q40 + 874q41 + 844q42 - 120q43 - 637q44 - 697q45 - 103q46 + 118q47 + 246q48 + 454q49 + 67q50 - 168q51 - 269q52 - 51q53 - 23q54 + 17q55 + 196q56 + 49q57 - 31q58 - 89q59 - 7q60 - 25q61 - 27q62 + 74q63 + 20q64 + q65 - 27q66 + 5q67 - 12q68 - 21q69 + 24q70 + 5q71 + 5q72 - 7q73 + 4q74 - 3q75 - 9q76 + 6q77 + 2q79 - q80 + q81 - 2q83 + q84 |
7 | - q-140 + 3q-139 - 5q-137 + 7q-134 - 4q-132 + 10q-131 - 4q-130 - 17q-129 - 9q-128 - 6q-127 + 25q-126 + 26q-125 - 3q-124 + 28q-123 - 12q-122 - 50q-121 - 47q-120 - 65q-119 + 41q-118 + 91q-117 + 55q-116 + 110q-115 + 21q-114 - 86q-113 - 122q-112 - 260q-111 - 88q-110 + 105q-109 + 137q-108 + 349q-107 + 242q-106 + 77q-105 - 64q-104 - 517q-103 - 485q-102 - 264q-101 - 136q-100 + 447q-99 + 618q-98 + 643q-97 + 659q-96 - 187q-95 - 644q-94 - 945q-93 - 1255q-92 - 484q-91 + 142q-90 + 958q-89 + 1994q-88 + 1549q-87 + 844q-86 - 432q-85 - 2354q-84 - 2688q-83 - 2529q-82 - 1038q-81 + 2037q-80 + 3714q-79 + 4603q-78 + 3349q-77 - 595q-76 - 3880q-75 - 6670q-74 - 6607q-73 - 2143q-72 + 2916q-71 + 8141q-70 + 10143q-69 + 6155q-68 - 263q-67 - 8487q-66 - 13576q-65 - 11017q-64 - 3882q-63 + 7132q-62 + 16060q-61 + 16312q-60 + 9515q-59 - 4126q-58 - 17348q-57 - 21155q-56 - 15869q-55 - 625q-54 + 16844q-53 + 25292q-52 + 22647q-51 + 6456q-50 - 14950q-49 - 28087q-48 - 28889q-47 - 13068q-46 + 11556q-45 + 29637q-44 + 34560q-43 + 19703q-42 - 7486q-41 - 29920q-40 - 39041q-39 - 25974q-38 + 2862q-37 + 29294q-36 + 42587q-35 + 31519q-34 + 1588q-33 - 28062q-32 - 45063q-31 - 36200q-30 - 5721q-29 + 26559q-28 + 46799q-27 + 39963q-26 + 9292q-25 - 25002q-24 - 47959q-23 - 42961q-22 - 12258q-21 + 23585q-20 + 48678q-19 + 45278q-18 + 14779q-17 - 22238q-16 - 49153q-15 - 47183q-14 - 16936q-13 + 20961q-12 + 49321q-11 + 48723q-10 + 18995q-9 - 19460q-8 - 49152q-7 - 50051q-6 - 21149q-5 + 17596q-4 + 48493q-3 + 51043q-2 + 23460q-1 - 15071 - 46997q - 51586q2 - 26022q3 + 11758q4 + 44492q5 + 51410q6 + 28531q7 - 7636q8 - 40694q9 - 50085q10 - 30755q11 + 2811q12 + 35554q13 + 47435q14 + 32266q15 + 2194q16 - 29277q17 - 43182q18 - 32519q19 - 6984q20 + 22153q21 + 37534q22 + 31380q23 + 10894q24 - 15023q25 - 30788q26 - 28609q27 - 13428q28 + 8369q29 + 23543q30 + 24606q31 + 14414q32 - 2931q33 - 16639q34 - 19766q35 - 13795q36 - 900q37 + 10528q38 + 14679q39 + 12096q40 + 3173q41 - 5829q42 - 10112q43 - 9630q44 - 3931q45 + 2521q46 + 6256q47 + 7082q48 + 3816q49 - 588q50 - 3517q51 - 4786q52 - 3062q53 - 351q54 + 1670q55 + 2998q56 + 2222q57 + 632q58 - 661q59 - 1736q60 - 1430q61 - 599q62 + 139q63 + 980q64 + 869q65 + 402q66 + 34q67 - 495q68 - 463q69 - 286q70 - 112q71 + 308q72 + 276q73 + 122q74 + 62q75 - 139q76 - 111q77 - 96q78 - 91q79 + 115q80 + 96q81 + 27q82 + 25q83 - 51q84 - 16q85 - 29q86 - 56q87 + 41q88 + 38q89 + 9q90 + 12q91 - 19q92 + 2q93 - 7q94 - 28q95 + 11q96 + 11q97 + 3q98 + 7q99 - 6q100 + 3q101 - q102 - 9q103 + 2q104 + 2q105 + 2q107 - q108 + q109 - 2q111 + q112 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 19]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], > X[13, 16, 14, 17], X[7, 15, 8, 14], X[15, 7, 16, 6], X[11, 18, 12, 1], > X[17, 12, 18, 13]] |
In[3]:= | GaussCode[Knot[9, 19]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8] |
In[4]:= | DTCode[Knot[9, 19]] |
Out[4]= | DTCode[4, 8, 10, 14, 2, 18, 16, 6, 12] |
In[5]:= | br = BR[Knot[9, 19]] |
Out[5]= | BR[5, {1, -2, 1, -2, -2, -3, 2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[9, 19]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[9, 19]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 19]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 19]][t] |
Out[10]= | 2 10 2 17 + -- - -- - 10 t + 2 t 2 t t |
In[11]:= | Conway[Knot[9, 19]][z] |
Out[11]= | 2 4 1 - 2 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 19]} |
In[13]:= | {KnotDet[Knot[9, 19]], KnotSignature[Knot[9, 19]]} |
Out[13]= | {41, 0} |
In[14]:= | Jones[Knot[9, 19]][q] |
Out[14]= | -5 3 4 6 7 2 3 4 7 - q + -- - -- + -- - - - 6 q + 4 q - 2 q + q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 19]} |
In[16]:= | A2Invariant[Knot[9, 19]][q] |
Out[16]= | -16 -14 -12 -10 2 -2 2 4 8 10 12 14 -1 - q + q + q - q + -- + q + q - 2 q + q - q + q + q 8 q |
In[17]:= | HOMFLYPT[Knot[9, 19]][a, z] |
Out[17]= | 2 -4 -2 2 2 z 2 2 4 2 4 2 4 a - a + a - ---- + a z - a z + z + a z 2 a |
In[18]:= | Kauffman[Knot[9, 19]][a, z] |
Out[18]= | 2 2 -4 -2 2 z z 3 2 2 z 3 z 2 2 a + a - a + -- - - - 3 a z - a z + 3 z - ---- - ---- + 8 a z + 3 a 4 2 a a a 3 3 4 4 2 3 z z 3 3 3 5 3 4 z 2 4 > 4 a z - ---- + -- + 10 a z + 4 a z - 2 a z - 4 z + -- - 11 a z - 3 a 4 a a 5 5 6 4 4 2 z z 5 3 5 5 5 6 2 z 2 6 > 8 a z + ---- - -- - 11 a z - 7 a z + a z + 2 z + ---- + 3 a z + 3 a 2 a a 7 4 6 2 z 7 3 7 8 2 8 > 3 a z + ---- + 5 a z + 3 a z + z + a z a |
In[19]:= | {Vassiliev[2][Knot[9, 19]], Vassiliev[3][Knot[9, 19]]} |
Out[19]= | {-2, -1} |
In[20]:= | Kh[Knot[9, 19]][q, t] |
Out[20]= | 4 1 2 1 2 2 4 2 3 4 - + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 5 3 7 3 9 4 > 3 q t + 3 q t + q t + 3 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[9, 19], 2][q] |
Out[21]= | -15 3 9 10 6 23 14 19 38 13 33 47 9 45 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - -- - 14 12 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q q 40 2 3 4 5 6 7 8 9 11 > -- - 3 q - 35 q + 31 q + q - 21 q + 15 q + q - 8 q + 5 q - 2 q + q 12 > q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 919 |
|