© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 918Visit 918's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 918's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,12,4,13 X5,14,6,15 X9,18,10,1 X17,6,18,7 X7,16,8,17 X15,8,16,9 X13,10,14,11 X11,2,12,3 |
Gauss Code: | {-1, 9, -2, 1, -3, 5, -6, 7, -4, 8, -9, 2, -8, 3, -7, 6, -5, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 12 14 16 18 2 10 8 6 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 4t-2 - 10t-1 + 13 - 10t + 4t2 |
Conway Polynomial: | 1 + 6z2 + 4z4 |
Other knots with the same Alexander/Conway Polynomial: | {K11a246, ...} |
Determinant and Signature: | {41, -4} |
Jones Polynomial: | - q-11 + 2q-10 - 4q-9 + 6q-8 - 7q-7 + 7q-6 - 6q-5 + 5q-4 - 2q-3 + q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-34 - 2q-28 + q-26 + q-20 - q-18 + 2q-16 + q-12 + 2q-10 - q-8 + q-6 |
HOMFLY-PT Polynomial: | a4 + 2a4z2 + a4z4 + a6 + 4a6z2 + 2a6z4 + a8z2 + a8z4 - a10 - a10z2 |
Kauffman Polynomial: | a4 - 2a4z2 + a4z4 - 2a5z3 + 2a5z5 - a6 + 3a6z2 - 4a6z4 + 3a6z6 + 2a7z - 4a7z3 + a7z5 + 2a7z7 - 2a8z4 + 2a8z6 + a8z8 + a9z3 - 5a9z5 + 4a9z7 + a10 - 2a10z2 - 2a10z4 + a10z6 + a10z8 - 3a11z5 + 2a11z7 + 3a12z2 - 5a12z4 + 2a12z6 + 2a13z - 3a13z3 + a13z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {6, -15} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 918. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-31 - 2q-30 + 6q-28 - 8q-27 - 4q-26 + 20q-25 - 15q-24 - 15q-23 + 38q-22 - 19q-21 - 30q-20 + 51q-19 - 16q-18 - 39q-17 + 52q-16 - 10q-15 - 37q-14 + 39q-13 - 3q-12 - 25q-11 + 20q-10 + q-9 - 10q-8 + 6q-7 + q-6 - 2q-5 + q-4 |
3 | - q-60 + 2q-59 - 2q-57 - 3q-56 + 7q-55 + 5q-54 - 10q-53 - 15q-52 + 17q-51 + 26q-50 - 17q-49 - 48q-48 + 18q-47 + 68q-46 - 7q-45 - 93q-44 - 7q-43 + 116q-42 + 26q-41 - 134q-40 - 50q-39 + 148q-38 + 74q-37 - 157q-36 - 95q-35 + 160q-34 + 111q-33 - 155q-32 - 124q-31 + 145q-30 + 127q-29 - 126q-28 - 128q-27 + 107q-26 + 114q-25 - 76q-24 - 104q-23 + 57q-22 + 78q-21 - 29q-20 - 65q-19 + 22q-18 + 37q-17 - 5q-16 - 27q-15 + 5q-14 + 13q-13 - 8q-11 + 2q-10 + 2q-9 + q-8 - 2q-7 + q-6 |
4 | q-98 - 2q-97 + 2q-95 - q-94 + 4q-93 - 9q-92 - q-91 + 10q-90 + 15q-88 - 31q-87 - 17q-86 + 23q-85 + 17q-84 + 58q-83 - 67q-82 - 70q-81 + 7q-80 + 42q-79 + 171q-78 - 73q-77 - 151q-76 - 83q-75 + 19q-74 + 343q-73 + 4q-72 - 195q-71 - 239q-70 - 105q-69 + 506q-68 + 155q-67 - 153q-66 - 397q-65 - 308q-64 + 599q-63 + 323q-62 - 36q-61 - 512q-60 - 520q-59 + 621q-58 + 456q-57 + 97q-56 - 567q-55 - 679q-54 + 582q-53 + 529q-52 + 218q-51 - 557q-50 - 762q-49 + 486q-48 + 527q-47 + 310q-46 - 465q-45 - 748q-44 + 333q-43 + 433q-42 + 355q-41 - 300q-40 - 626q-39 + 168q-38 + 266q-37 + 321q-36 - 123q-35 - 423q-34 + 53q-33 + 103q-32 + 218q-31 - 15q-30 - 221q-29 + 14q-28 + 10q-27 + 106q-26 + 15q-25 - 89q-24 + 10q-23 - 12q-22 + 39q-21 + 9q-20 - 31q-19 + 9q-18 - 7q-17 + 11q-16 + 3q-15 - 9q-14 + 4q-13 - 2q-12 + 2q-11 + q-10 - 2q-9 + q-8 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 18]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[9, 18, 10, 1], > X[17, 6, 18, 7], X[7, 16, 8, 17], X[15, 8, 16, 9], X[13, 10, 14, 11], > X[11, 2, 12, 3]] |
In[3]:= | GaussCode[Knot[9, 18]] |
Out[3]= | GaussCode[-1, 9, -2, 1, -3, 5, -6, 7, -4, 8, -9, 2, -8, 3, -7, 6, -5, 4] |
In[4]:= | DTCode[Knot[9, 18]] |
Out[4]= | DTCode[4, 12, 14, 16, 18, 2, 10, 8, 6] |
In[5]:= | br = BR[Knot[9, 18]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, -2, -2, -2, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[9, 18]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 18]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 18]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 18]][t] |
Out[10]= | 4 10 2 13 + -- - -- - 10 t + 4 t 2 t t |
In[11]:= | Conway[Knot[9, 18]][z] |
Out[11]= | 2 4 1 + 6 z + 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 18], Knot[11, Alternating, 246]} |
In[13]:= | {KnotDet[Knot[9, 18]], KnotSignature[Knot[9, 18]]} |
Out[13]= | {41, -4} |
In[14]:= | Jones[Knot[9, 18]][q] |
Out[14]= | -11 2 4 6 7 7 6 5 2 -2 -q + --- - -- + -- - -- + -- - -- + -- - -- + q 10 9 8 7 6 5 4 3 q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 18]} |
In[16]:= | A2Invariant[Knot[9, 18]][q] |
Out[16]= | -34 2 -26 -20 -18 2 -12 2 -8 -6 -q - --- + q + q - q + --- + q + --- - q + q 28 16 10 q q q |
In[17]:= | HOMFLYPT[Knot[9, 18]][a, z] |
Out[17]= | 4 6 10 4 2 6 2 8 2 10 2 4 4 6 4 8 4 a + a - a + 2 a z + 4 a z + a z - a z + a z + 2 a z + a z |
In[18]:= | Kauffman[Knot[9, 18]][a, z] |
Out[18]= | 4 6 10 7 13 4 2 6 2 10 2 12 2 a - a + a + 2 a z + 2 a z - 2 a z + 3 a z - 2 a z + 3 a z - 5 3 7 3 9 3 13 3 4 4 6 4 8 4 > 2 a z - 4 a z + a z - 3 a z + a z - 4 a z - 2 a z - 10 4 12 4 5 5 7 5 9 5 11 5 13 5 > 2 a z - 5 a z + 2 a z + a z - 5 a z - 3 a z + a z + 6 6 8 6 10 6 12 6 7 7 9 7 11 7 > 3 a z + 2 a z + a z + 2 a z + 2 a z + 4 a z + 2 a z + 8 8 10 8 > a z + a z |
In[19]:= | {Vassiliev[2][Knot[9, 18]], Vassiliev[3][Knot[9, 18]]} |
Out[19]= | {6, -15} |
In[20]:= | Kh[Knot[9, 18]][q, t] |
Out[20]= | -5 -3 1 1 1 3 1 3 3 q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 23 9 21 8 19 8 19 7 17 7 17 6 15 6 q t q t q t q t q t q t q t 4 3 3 4 3 3 2 3 2 > ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- 15 5 13 5 13 4 11 4 11 3 9 3 9 2 7 2 5 q t q t q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[9, 18], 2][q] |
Out[21]= | -31 2 6 8 4 20 15 15 38 19 30 51 16 q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - 30 28 27 26 25 24 23 22 21 20 19 18 q q q q q q q q q q q q 39 52 10 37 39 3 25 20 -9 10 6 -6 2 > --- + --- - --- - --- + --- - --- - --- + --- + q - -- + -- + q - -- + 17 16 15 14 13 12 11 10 8 7 5 q q q q q q q q q q q -4 > q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 918 |
|