© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 917Visit 917's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 917's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X13,6,14,7 X15,18,16,1 X9,17,10,16 X17,9,18,8 |
Gauss Code: | {-1, 4, -3, 1, -2, 6, -5, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7} |
DT (Dowker-Thistlethwaite) Code: | 4 10 12 14 16 2 6 18 8 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 5t-2 + 9t-1 - 9 + 9t - 5t2 + t3 |
Conway Polynomial: | 1 - 2z2 + z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {39, -2} |
Jones Polynomial: | - q-6 + 3q-5 - 4q-4 + 6q-3 - 7q-2 + 6q-1 - 5 + 4q - 2q2 + q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-18 + q-16 + q-12 + 2q-10 - q-8 + q-6 - 2q-4 - q2 + q4 + q8 + q10 |
HOMFLY-PT Polynomial: | 2a-2 + a-2z2 - 3 - 6z2 - 2z4 + 2a2 + 5a2z2 + 4a2z4 + a2z6 - 2a4z2 - a4z4 |
Kauffman Polynomial: | - 2a-2 + 5a-2z2 - 4a-2z4 + a-2z6 - a-1z + 6a-1z3 - 7a-1z5 + 2a-1z7 - 3 + 13z2 - 12z4 + z6 + z8 + az + 6az3 - 13az5 + 5az7 - 2a2 + 9a2z2 - 14a2z4 + 4a2z6 + a2z8 + 3a3z - 4a3z3 - 2a3z5 + 3a3z7 - a4z2 - 3a4z4 + 4a4z6 + a5z - 3a5z3 + 4a5z5 - 2a6z2 + 3a6z4 + a7z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-2, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 917. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-17 - 3q-16 + q-15 + 6q-14 - 11q-13 + 6q-12 + 12q-11 - 25q-10 + 12q-9 + 20q-8 - 37q-7 + 13q-6 + 28q-5 - 39q-4 + 8q-3 + 30q-2 - 32q-1 + 1 + 26q - 20q2 - 5q3 + 17q4 - 8q5 - 5q6 + 7q7 - q8 - 2q9 + q10 |
3 | - q-33 + 3q-32 - q-31 - 3q-30 - q-29 + 6q-28 - 10q-26 + 7q-25 + 10q-24 - 10q-23 - 19q-22 + 26q-21 + 20q-20 - 35q-19 - 33q-18 + 52q-17 + 40q-16 - 59q-15 - 55q-14 + 66q-13 + 66q-12 - 65q-11 - 73q-10 + 55q-9 + 83q-8 - 47q-7 - 84q-6 + 32q-5 + 86q-4 - 19q-3 - 83q-2 + 5q-1 + 76 + 11q - 70q2 - 19q3 + 55q4 + 30q5 - 43q6 - 31q7 + 25q8 + 34q9 - 16q10 - 25q11 + 3q12 + 20q13 + q14 - 11q15 - 4q16 + 6q17 + 2q18 - q19 - 2q20 + q21 |
4 | q-54 - 3q-53 + q-52 + 3q-51 - 2q-50 + 6q-49 - 12q-48 + 4q-47 + 4q-46 - 11q-45 + 24q-44 - 21q-43 + 13q-42 - 4q-41 - 40q-40 + 53q-39 - 10q-38 + 37q-37 - 31q-36 - 109q-35 + 83q-34 + 37q-33 + 96q-32 - 68q-31 - 228q-30 + 89q-29 + 105q-28 + 198q-27 - 84q-26 - 358q-25 + 53q-24 + 136q-23 + 309q-22 - 47q-21 - 437q-20 - 5q-19 + 105q-18 + 370q-17 + 18q-16 - 431q-15 - 43q-14 + 30q-13 + 362q-12 + 83q-11 - 362q-10 - 60q-9 - 53q-8 + 312q-7 + 134q-6 - 262q-5 - 65q-4 - 131q-3 + 239q-2 + 168q-1 - 147 - 52q - 190q2 + 143q3 + 168q4 - 35q5 - 10q6 - 208q7 + 40q8 + 122q9 + 38q10 + 48q11 - 163q12 - 32q13 + 45q14 + 50q15 + 84q16 - 83q17 - 46q18 - 12q19 + 19q20 + 70q21 - 19q22 - 20q23 - 23q24 - 7q25 + 32q26 + 2q27 - 9q29 - 8q30 + 7q31 + q32 + 2q33 - q34 - 2q35 + q36 |
5 | - q-80 + 3q-79 - q-78 - 3q-77 + 2q-76 - 3q-75 + 8q-73 + 2q-72 - 6q-71 + q-70 - 11q-69 - 7q-68 + 12q-67 + 19q-66 + 13q-65 - 10q-64 - 36q-63 - 38q-62 + 6q-61 + 75q-60 + 81q-59 - 17q-58 - 114q-57 - 134q-56 - 19q-55 + 190q-54 + 253q-53 + 18q-52 - 271q-51 - 365q-50 - 104q-49 + 372q-48 + 568q-47 + 172q-46 - 467q-45 - 752q-44 - 335q-43 + 540q-42 + 994q-41 + 488q-40 - 558q-39 - 1185q-38 - 712q-37 + 538q-36 + 1357q-35 + 898q-34 - 457q-33 - 1439q-32 - 1086q-31 + 341q-30 + 1472q-29 + 1212q-28 - 217q-27 - 1431q-26 - 1274q-25 + 81q-24 + 1344q-23 + 1304q-22 + 19q-21 - 1235q-20 - 1262q-19 - 120q-18 + 1089q-17 + 1228q-16 + 199q-15 - 960q-14 - 1144q-13 - 279q-12 + 796q-11 + 1077q-10 + 359q-9 - 641q-8 - 987q-7 - 428q-6 + 467q-5 + 874q-4 + 501q-3 - 284q-2 - 758q-1 - 540 + 112q + 594q2 + 554q3 + 65q4 - 437q5 - 519q6 - 188q7 + 239q8 + 449q9 + 287q10 - 82q11 - 329q12 - 307q13 - 82q14 + 200q15 + 300q16 + 153q17 - 58q18 - 213q19 - 216q20 - 47q21 + 137q22 + 185q23 + 112q24 - 25q25 - 151q26 - 136q27 - 28q28 + 74q29 + 119q30 + 72q31 - 25q32 - 80q33 - 70q34 - 19q35 + 43q36 + 59q37 + 23q38 - 9q39 - 31q40 - 30q41 - 3q42 + 19q43 + 13q44 + 6q45 - 11q47 - 6q48 + 3q49 + 2q50 + q51 + 2q52 - q53 - 2q54 + q55 |
6 | q-111 - 3q-110 + q-109 + 3q-108 - 2q-107 + 3q-106 - 3q-105 + 4q-104 - 14q-103 + 16q-101 - 8q-100 + 15q-99 + 7q-97 - 49q-96 - 11q-95 + 37q-94 - 9q-93 + 52q-92 + 24q-91 + 4q-90 - 141q-89 - 55q-88 + 70q-87 + 25q-86 + 162q-85 + 91q-84 - 42q-83 - 356q-82 - 194q-81 + 132q-80 + 175q-79 + 452q-78 + 246q-77 - 202q-76 - 825q-75 - 565q-74 + 203q-73 + 573q-72 + 1112q-71 + 630q-70 - 483q-69 - 1719q-68 - 1398q-67 + 114q-66 + 1232q-65 + 2333q-64 + 1502q-63 - 661q-62 - 2983q-61 - 2869q-60 - 469q-59 + 1809q-58 + 3959q-57 + 3028q-56 - 303q-55 - 4120q-54 - 4702q-53 - 1720q-52 + 1762q-51 + 5341q-50 + 4842q-49 + 771q-48 - 4501q-47 - 6149q-46 - 3233q-45 + 941q-44 + 5837q-43 + 6172q-42 + 2108q-41 - 4019q-40 - 6629q-39 - 4292q-38 - 169q-37 + 5428q-36 + 6557q-35 + 3069q-34 - 3156q-33 - 6235q-32 - 4589q-31 - 1024q-30 + 4596q-29 + 6189q-28 + 3485q-27 - 2336q-26 - 5450q-25 - 4399q-24 - 1559q-23 + 3697q-22 + 5526q-21 + 3631q-20 - 1573q-19 - 4553q-18 - 4101q-17 - 2030q-16 + 2724q-15 + 4771q-14 + 3770q-13 - 685q-12 - 3511q-11 - 3766q-10 - 2571q-9 + 1550q-8 + 3830q-7 + 3838q-6 + 349q-5 - 2203q-4 - 3198q-3 - 3010q-2 + 213q-1 + 2555 + 3551q + 1264q2 - 702q3 - 2193q4 - 2990q5 - 965q6 + 1030q7 + 2680q8 + 1642q9 + 615q10 - 848q11 - 2269q12 - 1523q13 - 319q14 + 1369q15 + 1241q16 + 1248q17 + 349q18 - 1058q19 - 1230q20 - 959q21 + 181q22 + 335q23 + 1007q24 + 852q25 + 5q26 - 436q27 - 750q28 - 331q29 - 406q30 + 315q31 + 591q32 + 397q33 + 177q34 - 175q35 - 172q36 - 544q37 - 162q38 + 93q39 + 216q40 + 264q41 + 158q42 + 131q43 - 267q44 - 190q45 - 136q46 - 29q47 + 68q48 + 133q49 + 197q50 - 31q51 - 39q52 - 90q53 - 73q54 - 49q55 + 17q56 + 100q57 + 19q58 + 25q59 - 11q60 - 22q61 - 39q62 - 17q63 + 24q64 + 3q65 + 14q66 + 5q67 + 3q68 - 11q69 - 8q70 + 5q71 - 2q72 + 2q73 + q74 + 2q75 - q76 - 2q77 + q78 |
7 | - q-147 + 3q-146 - q-145 - 3q-144 + 2q-143 - 3q-142 + 3q-141 - q-140 + 2q-139 + 12q-138 - 10q-137 - 9q-136 + 4q-135 - 14q-134 + 5q-133 + 5q-132 + 13q-131 + 41q-130 - 27q-129 - 26q-128 - 8q-127 - 46q-126 + 13q-125 + 28q-124 + 49q-123 + 99q-122 - 51q-121 - 85q-120 - 66q-119 - 116q-118 + 69q-117 + 130q-116 + 139q-115 + 180q-114 - 143q-113 - 272q-112 - 261q-111 - 207q-110 + 306q-109 + 497q-108 + 425q-107 + 235q-106 - 524q-105 - 889q-104 - 792q-103 - 301q-102 + 1000q-101 + 1583q-100 + 1291q-99 + 327q-98 - 1575q-97 - 2544q-96 - 2220q-95 - 581q-94 + 2435q-93 + 4074q-92 + 3542q-91 + 951q-90 - 3371q-89 - 5933q-88 - 5491q-87 - 1887q-86 + 4310q-85 + 8324q-84 + 8091q-83 + 3279q-82 - 4997q-81 - 10798q-80 - 11273q-79 - 5491q-78 + 5144q-77 + 13296q-76 + 14823q-75 + 8329q-74 - 4551q-73 - 15254q-72 - 18449q-71 - 11778q-70 + 3183q-69 + 16509q-68 + 21658q-67 + 15380q-66 - 1005q-65 - 16777q-64 - 24203q-63 - 18846q-62 - 1574q-61 + 16178q-60 + 25700q-59 + 21694q-58 + 4299q-57 - 14777q-56 - 26211q-55 - 23769q-54 - 6760q-53 + 13009q-52 + 25852q-51 + 24854q-50 + 8682q-49 - 11094q-48 - 24782q-47 - 25156q-46 - 10065q-45 + 9340q-44 + 23452q-43 + 24815q-42 + 10781q-41 - 7831q-40 - 21880q-39 - 24079q-38 - 11219q-37 + 6522q-36 + 20426q-35 + 23229q-34 + 11376q-33 - 5408q-32 - 18922q-31 - 22293q-30 - 11593q-29 + 4192q-28 + 17463q-27 + 21484q-26 + 11890q-25 - 2930q-24 - 15887q-23 - 20591q-22 - 12339q-21 + 1349q-20 + 14102q-19 + 19706q-18 + 12923q-17 + 411q-16 - 12072q-15 - 18579q-14 - 13477q-13 - 2401q-12 + 9672q-11 + 17159q-10 + 13940q-9 + 4495q-8 - 7019q-7 - 15370q-6 - 14025q-5 - 6474q-4 + 4086q-3 + 13062q-2 + 13694q-1 + 8236 - 1134q - 10385q2 - 12709q3 - 9431q4 - 1728q5 + 7335q6 + 11106q7 + 9981q8 + 4155q9 - 4215q10 - 8868q11 - 9686q12 - 5947q13 + 1220q14 + 6257q15 + 8590q16 + 6854q17 + 1263q18 - 3467q19 - 6771q20 - 6888q21 - 3046q22 + 949q23 + 4607q24 + 5999q25 + 3862q26 + 1094q27 - 2308q28 - 4558q29 - 3897q30 - 2300q31 + 427q32 + 2807q33 + 3090q34 + 2731q35 + 992q36 - 1187q37 - 2017q38 - 2446q39 - 1577q40 - 41q41 + 788q42 + 1699q43 + 1635q44 + 738q45 + 115q46 - 849q47 - 1205q48 - 874q49 - 670q50 + 114q51 + 635q52 + 676q53 + 799q54 + 322q55 - 123q56 - 324q57 - 643q58 - 453q59 - 184q60 - 25q61 + 367q62 + 399q63 + 294q64 + 198q65 - 133q66 - 208q67 - 229q68 - 267q69 - 50q70 + 74q71 + 150q72 + 209q73 + 75q74 + 24q75 - 23q76 - 132q77 - 93q78 - 59q79 - 2q80 + 70q81 + 37q82 + 38q83 + 38q84 - 13q85 - 25q86 - 34q87 - 23q88 + 13q89 + q90 + 5q91 + 16q92 + 5q93 + 2q94 - 8q95 - 8q96 + 3q97 - 2q99 + 2q100 + q101 + 2q102 - q103 - 2q104 + q105 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 17]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], > X[7, 14, 8, 15], X[13, 6, 14, 7], X[15, 18, 16, 1], X[9, 17, 10, 16], > X[17, 9, 18, 8]] |
In[3]:= | GaussCode[Knot[9, 17]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 6, -5, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7] |
In[4]:= | DTCode[Knot[9, 17]] |
Out[4]= | DTCode[4, 10, 12, 14, 16, 2, 6, 18, 8] |
In[5]:= | br = BR[Knot[9, 17]] |
Out[5]= | BR[4, {1, -2, 1, -2, -2, -2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 17]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 17]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 17]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, {4, 7}, 1} |
In[10]:= | alex = Alexander[Knot[9, 17]][t] |
Out[10]= | -3 5 9 2 3 -9 + t - -- + - + 9 t - 5 t + t 2 t t |
In[11]:= | Conway[Knot[9, 17]][z] |
Out[11]= | 2 4 6 1 - 2 z + z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 17]} |
In[13]:= | {KnotDet[Knot[9, 17]], KnotSignature[Knot[9, 17]]} |
Out[13]= | {39, -2} |
In[14]:= | Jones[Knot[9, 17]][q] |
Out[14]= | -6 3 4 6 7 6 2 3 -5 - q + -- - -- + -- - -- + - + 4 q - 2 q + q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 17]} |
In[16]:= | A2Invariant[Knot[9, 17]][q] |
Out[16]= | -18 -16 -12 2 -8 -6 2 2 4 8 10 -q + q + q + --- - q + q - -- - q + q + q + q 10 4 q q |
In[17]:= | HOMFLYPT[Knot[9, 17]][a, z] |
Out[17]= | 2 2 2 2 z 2 2 4 2 4 2 4 4 4 2 6 -3 + -- + 2 a - 6 z + -- + 5 a z - 2 a z - 2 z + 4 a z - a z + a z 2 2 a a |
In[18]:= | Kauffman[Knot[9, 17]][a, z] |
Out[18]= | 2 2 2 z 3 5 2 5 z 2 2 4 2 -3 - -- - 2 a - - + a z + 3 a z + a z + 13 z + ---- + 9 a z - a z - 2 a 2 a a 3 4 6 2 6 z 3 3 3 5 3 7 3 4 4 z > 2 a z + ---- + 6 a z - 4 a z - 3 a z + a z - 12 z - ---- - a 2 a 5 2 4 4 4 6 4 7 z 5 3 5 5 5 6 > 14 a z - 3 a z + 3 a z - ---- - 13 a z - 2 a z + 4 a z + z + a 6 7 z 2 6 4 6 2 z 7 3 7 8 2 8 > -- + 4 a z + 4 a z + ---- + 5 a z + 3 a z + z + a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[9, 17]], Vassiliev[3][Knot[9, 17]]} |
Out[19]= | {-2, 0} |
In[20]:= | Kh[Knot[9, 17]][q, t] |
Out[20]= | 3 4 1 2 1 2 2 4 2 3 -- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 5 q q t q t q t q t q t q t q t q t 4 3 t 2 3 2 3 3 5 3 7 4 > ---- + --- + 2 q t + q t + 3 q t + q t + q t + q t 3 q q t |
In[21]:= | ColouredJones[Knot[9, 17], 2][q] |
Out[21]= | -17 3 -15 6 11 6 12 25 12 20 37 13 28 1 + q - --- + q + --- - --- + --- + --- - --- + -- + -- - -- + -- + -- - 16 14 13 12 11 10 9 8 7 6 5 q q q q q q q q q q q 39 8 30 32 2 3 4 5 6 7 8 > -- + -- + -- - -- + 26 q - 20 q - 5 q + 17 q - 8 q - 5 q + 7 q - q - 4 3 2 q q q q 9 10 > 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 917 |
|