© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 89Visit 89's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X6271 X14,8,15,7 X10,3,11,4 X2,13,3,14 X12,5,13,6 X4,11,5,12 X16,10,1,9 X8,16,9,15 |
Gauss Code: | {1, -4, 3, -6, 5, -1, 2, -8, 7, -3, 6, -5, 4, -2, 8, -7} |
DT (Dowker-Thistlethwaite) Code: | 6 10 12 14 16 4 2 8 |
Minimum Braid Representative:
Length is 8, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 3t-2 - 5t-1 + 7 - 5t + 3t2 - t3 |
Conway Polynomial: | 1 - 2z2 - 3z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {10155, K11n37, ...} |
Determinant and Signature: | {25, 0} |
Jones Polynomial: | q-4 - 2q-3 + 3q-2 - 4q-1 + 5 - 4q + 3q2 - 2q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-12 + q-8 - q-4 + q-2 - 1 + q2 - q4 + q8 + q12 |
HOMFLY-PT Polynomial: | 2a-2 + 3a-2z2 + a-2z4 - 3 - 8z2 - 5z4 - z6 + 2a2 + 3a2z2 + a2z4 |
Kauffman Polynomial: | - 2a-4z2 + a-4z4 + a-3z - 4a-3z3 + 2a-3z5 - 2a-2 + 4a-2z2 - 4a-2z4 + 2a-2z6 + a-1z - a-1z3 + a-1z7 - 3 + 12z2 - 10z4 + 4z6 + az - az3 + az7 - 2a2 + 4a2z2 - 4a2z4 + 2a2z6 + a3z - 4a3z3 + 2a3z5 - 2a4z2 + a4z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-2, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 89. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-12 - 2q-11 + 5q-9 - 6q-8 - 2q-7 + 12q-6 - 10q-5 - 7q-4 + 20q-3 - 12q-2 - 11q-1 + 25 - 11q - 12q2 + 20q3 - 7q4 - 10q5 + 12q6 - 2q7 - 6q8 + 5q9 - 2q11 + q12 |
3 | q-24 - 2q-23 + 2q-21 + 2q-20 - 5q-19 - 3q-18 + 7q-17 + 7q-16 - 11q-15 - 11q-14 + 12q-13 + 19q-12 - 13q-11 - 27q-10 + 12q-9 + 36q-8 - 10q-7 - 44q-6 + 7q-5 + 51q-4 - 5q-3 - 54q-2 + 59 - 54q2 - 5q3 + 51q4 + 7q5 - 44q6 - 10q7 + 36q8 + 12q9 - 27q10 - 13q11 + 19q12 + 12q13 - 11q14 - 11q15 + 7q16 + 7q17 - 3q18 - 5q19 + 2q20 + 2q21 - 2q23 + q24 |
4 | q-40 - 2q-39 + 2q-37 - q-36 + 3q-35 - 7q-34 + q-33 + 7q-32 - 3q-31 + 8q-30 - 19q-29 - 2q-28 + 17q-27 + q-26 + 20q-25 - 39q-24 - 16q-23 + 21q-22 + 12q-21 + 53q-20 - 54q-19 - 44q-18 + 4q-17 + 20q-16 + 105q-15 - 53q-14 - 72q-13 - 31q-12 + 15q-11 + 159q-10 - 40q-9 - 89q-8 - 64q-7 + q-6 + 197q-5 - 25q-4 - 93q-3 - 86q-2 - 13q-1 + 213 - 13q - 86q2 - 93q3 - 25q4 + 197q5 + q6 - 64q7 - 89q8 - 40q9 + 159q10 + 15q11 - 31q12 - 72q13 - 53q14 + 105q15 + 20q16 + 4q17 - 44q18 - 54q19 + 53q20 + 12q21 + 21q22 - 16q23 - 39q24 + 20q25 + q26 + 17q27 - 2q28 - 19q29 + 8q30 - 3q31 + 7q32 + q33 - 7q34 + 3q35 - q36 + 2q37 - 2q39 + q40 |
5 | q-60 - 2q-59 + 2q-57 - q-56 + q-54 - 3q-53 + 6q-51 - 5q-49 - 2q-48 - 5q-47 + 2q-46 + 14q-45 + 9q-44 - 7q-43 - 16q-42 - 19q-41 - 3q-40 + 28q-39 + 34q-38 + 12q-37 - 24q-36 - 55q-35 - 37q-34 + 19q-33 + 67q-32 + 70q-31 + 9q-30 - 78q-29 - 110q-28 - 45q-27 + 71q-26 + 147q-25 + 100q-24 - 52q-23 - 182q-22 - 156q-21 + 19q-20 + 204q-19 + 216q-18 + 21q-17 - 217q-16 - 268q-15 - 64q-14 + 221q-13 + 312q-12 + 101q-11 - 218q-10 - 341q-9 - 138q-8 + 211q-7 + 370q-6 + 158q-5 - 206q-4 - 372q-3 - 183q-2 + 188q-1 + 393 + 188q - 183q2 - 372q3 - 206q4 + 158q5 + 370q6 + 211q7 - 138q8 - 341q9 - 218q10 + 101q11 + 312q12 + 221q13 - 64q14 - 268q15 - 217q16 + 21q17 + 216q18 + 204q19 + 19q20 - 156q21 - 182q22 - 52q23 + 100q24 + 147q25 + 71q26 - 45q27 - 110q28 - 78q29 + 9q30 + 70q31 + 67q32 + 19q33 - 37q34 - 55q35 - 24q36 + 12q37 + 34q38 + 28q39 - 3q40 - 19q41 - 16q42 - 7q43 + 9q44 + 14q45 + 2q46 - 5q47 - 2q48 - 5q49 + 6q51 - 3q53 + q54 - q56 + 2q57 - 2q59 + q60 |
6 | q-84 - 2q-83 + 2q-81 - q-80 - 2q-78 + 5q-77 - 4q-76 - q-75 + 8q-74 - 4q-73 - 4q-72 - 9q-71 + 12q-70 - 5q-69 + 2q-68 + 23q-67 - 5q-66 - 13q-65 - 31q-64 + 15q-63 - 13q-62 + 8q-61 + 60q-60 + 15q-59 - 13q-58 - 68q-57 - 3q-56 - 57q-55 - 9q-54 + 107q-53 + 79q-52 + 42q-51 - 73q-50 - 19q-49 - 163q-48 - 108q-47 + 93q-46 + 146q-45 + 172q-44 + 32q-43 + 60q-42 - 272q-41 - 302q-40 - 68q-39 + 107q-38 + 298q-37 + 249q-36 + 310q-35 - 265q-34 - 491q-33 - 357q-32 - 103q-31 + 302q-30 + 470q-29 + 687q-28 - 100q-27 - 566q-26 - 651q-25 - 416q-24 + 164q-23 + 590q-22 + 1052q-21 + 143q-20 - 522q-19 - 847q-18 - 696q-17 - 31q-16 + 605q-15 + 1305q-14 + 348q-13 - 430q-12 - 936q-11 - 867q-10 - 188q-9 + 570q-8 + 1436q-7 + 466q-6 - 349q-5 - 959q-4 - 941q-3 - 283q-2 + 525q-1 + 1477 + 525q - 283q2 - 941q3 - 959q4 - 349q5 + 466q6 + 1436q7 + 570q8 - 188q9 - 867q10 - 936q11 - 430q12 + 348q13 + 1305q14 + 605q15 - 31q16 - 696q17 - 847q18 - 522q19 + 143q20 + 1052q21 + 590q22 + 164q23 - 416q24 - 651q25 - 566q26 - 100q27 + 687q28 + 470q29 + 302q30 - 103q31 - 357q32 - 491q33 - 265q34 + 310q35 + 249q36 + 298q37 + 107q38 - 68q39 - 302q40 - 272q41 + 60q42 + 32q43 + 172q44 + 146q45 + 93q46 - 108q47 - 163q48 - 19q49 - 73q50 + 42q51 + 79q52 + 107q53 - 9q54 - 57q55 - 3q56 - 68q57 - 13q58 + 15q59 + 60q60 + 8q61 - 13q62 + 15q63 - 31q64 - 13q65 - 5q66 + 23q67 + 2q68 - 5q69 + 12q70 - 9q71 - 4q72 - 4q73 + 8q74 - q75 - 4q76 + 5q77 - 2q78 - q80 + 2q81 - 2q83 + q84 |
7 | q-112 - 2q-111 + 2q-109 - q-108 - 2q-106 + 2q-105 + 4q-104 - 5q-103 + q-102 + 4q-101 - 4q-100 - 2q-99 - 8q-98 + q-97 + 16q-96 - 3q-95 + 5q-94 + 8q-93 - 11q-92 - 6q-91 - 29q-90 - 11q-89 + 32q-88 + 10q-87 + 28q-86 + 27q-85 - 15q-84 - 12q-83 - 71q-82 - 61q-81 + 24q-80 + 16q-79 + 79q-78 + 92q-77 + 27q-76 + 21q-75 - 113q-74 - 156q-73 - 70q-72 - 69q-71 + 85q-70 + 191q-69 + 158q-68 + 185q-67 - 27q-66 - 203q-65 - 227q-64 - 336q-63 - 117q-62 + 140q-61 + 270q-60 + 503q-59 + 329q-58 + 30q-57 - 227q-56 - 661q-55 - 601q-54 - 292q-53 + 72q-52 + 736q-51 + 878q-50 + 659q-49 + 227q-48 - 711q-47 - 1129q-46 - 1075q-45 - 631q-44 + 549q-43 + 1283q-42 + 1492q-41 + 1138q-40 - 257q-39 - 1345q-38 - 1870q-37 - 1666q-36 - 122q-35 + 1287q-34 + 2159q-33 + 2185q-32 + 554q-31 - 1140q-30 - 2362q-29 - 2642q-28 - 984q-27 + 942q-26 + 2477q-25 + 3009q-24 + 1367q-23 - 721q-22 - 2511q-21 - 3289q-20 - 1694q-19 + 513q-18 + 2513q-17 + 3488q-16 + 1926q-15 - 347q-14 - 2473q-13 - 3596q-12 - 2106q-11 + 194q-10 + 2437q-9 + 3692q-8 + 2217q-7 - 126q-6 - 2389q-5 - 3694q-4 - 2294q-3 + 13q-2 + 2343q-1 + 3751 + 2343q + 13q2 - 2294q3 - 3694q4 - 2389q5 - 126q6 + 2217q7 + 3692q8 + 2437q9 + 194q10 - 2106q11 - 3596q12 - 2473q13 - 347q14 + 1926q15 + 3488q16 + 2513q17 + 513q18 - 1694q19 - 3289q20 - 2511q21 - 721q22 + 1367q23 + 3009q24 + 2477q25 + 942q26 - 984q27 - 2642q28 - 2362q29 - 1140q30 + 554q31 + 2185q32 + 2159q33 + 1287q34 - 122q35 - 1666q36 - 1870q37 - 1345q38 - 257q39 + 1138q40 + 1492q41 + 1283q42 + 549q43 - 631q44 - 1075q45 - 1129q46 - 711q47 + 227q48 + 659q49 + 878q50 + 736q51 + 72q52 - 292q53 - 601q54 - 661q55 - 227q56 + 30q57 + 329q58 + 503q59 + 270q60 + 140q61 - 117q62 - 336q63 - 227q64 - 203q65 - 27q66 + 185q67 + 158q68 + 191q69 + 85q70 - 69q71 - 70q72 - 156q73 - 113q74 + 21q75 + 27q76 + 92q77 + 79q78 + 16q79 + 24q80 - 61q81 - 71q82 - 12q83 - 15q84 + 27q85 + 28q86 + 10q87 + 32q88 - 11q89 - 29q90 - 6q91 - 11q92 + 8q93 + 5q94 - 3q95 + 16q96 + q97 - 8q98 - 2q99 - 4q100 + 4q101 + q102 - 5q103 + 4q104 + 2q105 - 2q106 - q108 + 2q109 - 2q111 + q112 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[8, 9]] |
Out[2]= | PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[10, 3, 11, 4], X[2, 13, 3, 14], > X[12, 5, 13, 6], X[4, 11, 5, 12], X[16, 10, 1, 9], X[8, 16, 9, 15]] |
In[3]:= | GaussCode[Knot[8, 9]] |
Out[3]= | GaussCode[1, -4, 3, -6, 5, -1, 2, -8, 7, -3, 6, -5, 4, -2, 8, -7] |
In[4]:= | DTCode[Knot[8, 9]] |
Out[4]= | DTCode[6, 10, 12, 14, 16, 4, 2, 8] |
In[5]:= | br = BR[Knot[8, 9]] |
Out[5]= | BR[3, {-1, -1, -1, 2, -1, 2, 2, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[8, 9]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[8, 9]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[8, 9]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {FullyAmphicheiral, 1, 3, 2, {3, 6}, 1} |
In[10]:= | alex = Alexander[Knot[8, 9]][t] |
Out[10]= | -3 3 5 2 3 7 - t + -- - - - 5 t + 3 t - t 2 t t |
In[11]:= | Conway[Knot[8, 9]][z] |
Out[11]= | 2 4 6 1 - 2 z - 3 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 9], Knot[10, 155], Knot[11, NonAlternating, 37]} |
In[13]:= | {KnotDet[Knot[8, 9]], KnotSignature[Knot[8, 9]]} |
Out[13]= | {25, 0} |
In[14]:= | Jones[Knot[8, 9]][q] |
Out[14]= | -4 2 3 4 2 3 4 5 + q - -- + -- - - - 4 q + 3 q - 2 q + q 3 2 q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 9]} |
In[16]:= | A2Invariant[Knot[8, 9]][q] |
Out[16]= | -12 -8 -4 -2 2 4 8 12 -1 + q + q - q + q + q - q + q + q |
In[17]:= | HOMFLYPT[Knot[8, 9]][a, z] |
Out[17]= | 2 4 2 2 2 3 z 2 2 4 z 2 4 6 -3 + -- + 2 a - 8 z + ---- + 3 a z - 5 z + -- + a z - z 2 2 2 a a a |
In[18]:= | Kauffman[Knot[8, 9]][a, z] |
Out[18]= | 2 2 2 2 z z 3 2 2 z 4 z 2 2 -3 - -- - 2 a + -- + - + a z + a z + 12 z - ---- + ---- + 4 a z - 2 3 a 4 2 a a a a 3 3 4 4 4 2 4 z z 3 3 3 4 z 4 z 2 4 > 2 a z - ---- - -- - a z - 4 a z - 10 z + -- - ---- - 4 a z + 3 a 4 2 a a a 5 6 7 4 4 2 z 3 5 6 2 z 2 6 z 7 > a z + ---- + 2 a z + 4 z + ---- + 2 a z + -- + a z 3 2 a a a |
In[19]:= | {Vassiliev[2][Knot[8, 9]], Vassiliev[3][Knot[8, 9]]} |
Out[19]= | {-2, 0} |
In[20]:= | Kh[Knot[8, 9]][q, t] |
Out[20]= | 3 1 1 1 2 1 2 2 3 - + 3 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 2 q t + 2 q t + q 9 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t 3 2 5 2 5 3 7 3 9 4 > q t + 2 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[8, 9], 2][q] |
Out[21]= | -12 2 5 6 2 12 10 7 20 12 11 2 25 + q - --- + -- - -- - -- + -- - -- - -- + -- - -- - -- - 11 q - 12 q + 11 9 8 7 6 5 4 3 2 q q q q q q q q q q 3 4 5 6 7 8 9 11 12 > 20 q - 7 q - 10 q + 12 q - 2 q - 6 q + 5 q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 89 |
|