© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 86Visit 86's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,14,6,15 X7,16,8,1 X15,6,16,7 X13,8,14,9 |
Gauss Code: | {-1, 4, -3, 1, -5, 7, -6, 8, -2, 3, -4, 2, -8, 5, -7, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 10 14 16 12 2 8 6 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-2 + 6t-1 - 7 + 6t - 2t2 |
Conway Polynomial: | 1 - 2z2 - 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {K11n20, K11n151, K11n152, ...} |
Determinant and Signature: | {23, -2} |
Jones Polynomial: | q-7 - 2q-6 + 3q-5 - 4q-4 + 4q-3 - 4q-2 + 3q-1 - 1 + q |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-22 + q-16 - q-14 - q-10 - q-8 - q-4 + 2q-2 + 1 + q2 + q4 |
HOMFLY-PT Polynomial: | 2 + z2 - a2 - 2a2z2 - a2z4 - a4 - 2a4z2 - a4z4 + a6 + a6z2 |
Kauffman Polynomial: | 2 - 3z2 + z4 - az - az3 + az5 + a2 - 2a2z2 + a2z6 - 3a3z + 5a3z3 - 2a3z5 + a3z7 - a4 + 6a4z2 - 6a4z4 + 3a4z6 - a5z + 2a5z3 - a5z5 + a5z7 - a6 + 3a6z2 - 4a6z4 + 2a6z6 + a7z - 4a7z3 + 2a7z5 - 2a8z2 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-2, 3} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 86. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 2q-19 + 5q-17 - 6q-16 - 3q-15 + 12q-14 - 8q-13 - 8q-12 + 19q-11 - 9q-10 - 12q-9 + 21q-8 - 8q-7 - 12q-6 + 17q-5 - 4q-4 - 9q-3 + 9q-2 - q-1 - 4 + 3q - q3 + q4 |
3 | q-39 - 2q-38 + 2q-36 + 2q-35 - 5q-34 - 4q-33 + 7q-32 + 9q-31 - 9q-30 - 14q-29 + 7q-28 + 22q-27 - 5q-26 - 29q-25 + 2q-24 + 35q-23 + 4q-22 - 42q-21 - 7q-20 + 44q-19 + 12q-18 - 48q-17 - 13q-16 + 46q-15 + 16q-14 - 44q-13 - 17q-12 + 39q-11 + 18q-10 - 32q-9 - 18q-8 + 25q-7 + 15q-6 - 14q-5 - 16q-4 + 12q-3 + 8q-2 - 3q-1 - 8 + 4q + 2q2 - 3q4 + 2q5 - q8 + q9 |
4 | q-64 - 2q-63 + 2q-61 - q-60 + 3q-59 - 7q-58 + 7q-56 - q-55 + 10q-54 - 19q-53 - 8q-52 + 12q-51 + 4q-50 + 31q-49 - 29q-48 - 25q-47 + 4q-45 + 70q-44 - 23q-43 - 42q-42 - 30q-41 - 11q-40 + 112q-39 - q-38 - 46q-37 - 65q-36 - 39q-35 + 146q-34 + 24q-33 - 41q-32 - 91q-31 - 64q-30 + 163q-29 + 41q-28 - 32q-27 - 103q-26 - 79q-25 + 163q-24 + 49q-23 - 21q-22 - 100q-21 - 86q-20 + 142q-19 + 50q-18 - 3q-17 - 84q-16 - 86q-15 + 103q-14 + 42q-13 + 17q-12 - 52q-11 - 74q-10 + 54q-9 + 25q-8 + 28q-7 - 19q-6 - 50q-5 + 20q-4 + 5q-3 + 21q-2 - 23 + 7q - 5q2 + 9q3 + 3q4 - 8q5 + 5q6 - 4q7 + 2q8 + q9 - 3q10 + 3q11 - q12 - q15 + q16 |
5 | q-95 - 2q-94 + 2q-92 - q-91 + q-89 - 3q-88 - q-87 + 6q-86 + 2q-85 - 3q-84 - 2q-83 - 8q-82 - 4q-81 + 10q-80 + 15q-79 + 6q-78 - 6q-77 - 21q-76 - 24q-75 + 2q-74 + 26q-73 + 39q-72 + 20q-71 - 26q-70 - 58q-69 - 46q-68 + 8q-67 + 73q-66 + 86q-65 + 18q-64 - 81q-63 - 122q-62 - 61q-61 + 74q-60 + 161q-59 + 111q-58 - 57q-57 - 195q-56 - 159q-55 + 31q-54 + 215q-53 + 212q-52 + q-51 - 237q-50 - 252q-49 - 25q-48 + 237q-47 + 289q-46 + 57q-45 - 250q-44 - 310q-43 - 73q-42 + 240q-41 + 330q-40 + 93q-39 - 242q-38 - 336q-37 - 103q-36 + 228q-35 + 339q-34 + 118q-33 - 218q-32 - 332q-31 - 127q-30 + 193q-29 + 322q-28 + 139q-27 - 166q-26 - 300q-25 - 148q-24 + 129q-23 + 268q-22 + 156q-21 - 85q-20 - 230q-19 - 158q-18 + 49q-17 + 175q-16 + 144q-15 + 6q-14 - 135q-13 - 133q-12 - 16q-11 + 75q-10 + 97q-9 + 52q-8 - 43q-7 - 80q-6 - 33q-5 + 7q-4 + 39q-3 + 46q-2 + 2q-1 - 27 - 18q - 14q2 + 4q3 + 22q4 + 7q5 - 5q6 - 10q8 - 4q9 + 7q10 + 2q11 - 2q12 + 5q13 - 3q14 - 3q15 + 2q16 - 2q18 + 3q19 - q21 - q24 + q25 |
6 | q-132 - 2q-131 + 2q-129 - q-128 - 2q-126 + 5q-125 - 4q-124 - 2q-123 + 8q-122 - 2q-121 - 2q-120 - 9q-119 + 9q-118 - 8q-117 - 3q-116 + 22q-115 + 4q-114 - 24q-112 + 11q-111 - 28q-110 - 19q-109 + 39q-108 + 26q-107 + 28q-106 - 22q-105 + 26q-104 - 68q-103 - 77q-102 + 11q-101 + 33q-100 + 77q-99 + 35q-98 + 118q-97 - 79q-96 - 158q-95 - 100q-94 - 52q-93 + 74q-92 + 116q-91 + 317q-90 + 27q-89 - 172q-88 - 247q-87 - 251q-86 - 70q-85 + 127q-84 + 556q-83 + 256q-82 - 41q-81 - 330q-80 - 486q-79 - 339q-78 + 7q-77 + 735q-76 + 519q-75 + 198q-74 - 303q-73 - 664q-72 - 630q-71 - 192q-70 + 814q-69 + 723q-68 + 440q-67 - 213q-66 - 750q-65 - 852q-64 - 377q-63 + 823q-62 + 837q-61 + 613q-60 - 126q-59 - 770q-58 - 978q-57 - 498q-56 + 802q-55 + 879q-54 + 706q-53 - 64q-52 - 753q-51 - 1030q-50 - 565q-49 + 757q-48 + 876q-47 + 749q-46 - 8q-45 - 701q-44 - 1031q-43 - 608q-42 + 664q-41 + 826q-40 + 763q-39 + 75q-38 - 587q-37 - 977q-36 - 643q-35 + 492q-34 + 698q-33 + 738q-32 + 192q-31 - 385q-30 - 832q-29 - 651q-28 + 251q-27 + 472q-26 + 632q-25 + 300q-24 - 126q-23 - 581q-22 - 576q-21 + 18q-20 + 197q-19 + 430q-18 + 318q-17 + 92q-16 - 290q-15 - 399q-14 - 97q-13 - 21q-12 + 193q-11 + 224q-10 + 173q-9 - 69q-8 - 193q-7 - 79q-6 - 100q-5 + 25q-4 + 94q-3 + 131q-2 + 19q-1 - 53 - 16q - 75q2 - 30q3 + 14q4 + 61q5 + 19q6 - 6q7 + 18q8 - 32q9 - 23q10 - 7q11 + 21q12 + 5q13 - 3q14 + 18q15 - 9q16 - 9q17 - 6q18 + 7q19 - 4q21 + 10q22 - 2q23 - 2q24 - 3q25 + 2q26 - 3q28 + 4q29 - q32 - q35 + q36 |
7 | q-175 - 2q-174 + 2q-172 - q-171 - 2q-169 + 2q-168 + 4q-167 - 5q-166 + 4q-164 - 2q-163 - 8q-161 - 2q-160 + 13q-159 - 5q-158 + 3q-157 + 10q-156 - 2q-155 + 5q-154 - 24q-153 - 19q-152 + 14q-151 - 7q-150 + 12q-149 + 27q-148 + 10q-147 + 34q-146 - 26q-145 - 50q-144 - 10q-143 - 52q-142 - 6q-141 + 31q-140 + 35q-139 + 111q-138 + 43q-137 - 16q-136 - 17q-135 - 144q-134 - 122q-133 - 65q-132 - 34q-131 + 176q-130 + 201q-129 + 181q-128 + 152q-127 - 145q-126 - 269q-125 - 327q-124 - 338q-123 + 25q-122 + 280q-121 + 480q-120 + 596q-119 + 176q-118 - 209q-117 - 583q-116 - 873q-115 - 481q-114 + 17q-113 + 623q-112 + 1153q-111 + 846q-110 + 265q-109 - 559q-108 - 1378q-107 - 1234q-106 - 637q-105 + 383q-104 + 1539q-103 + 1615q-102 + 1059q-101 - 146q-100 - 1616q-99 - 1937q-98 - 1474q-97 - 159q-96 + 1607q-95 + 2206q-94 + 1873q-93 + 474q-92 - 1567q-91 - 2400q-90 - 2190q-89 - 767q-88 + 1464q-87 + 2521q-86 + 2475q-85 + 1031q-84 - 1387q-83 - 2606q-82 - 2653q-81 - 1227q-80 + 1273q-79 + 2640q-78 + 2805q-77 + 1391q-76 - 1210q-75 - 2659q-74 - 2878q-73 - 1499q-72 + 1128q-71 + 2651q-70 + 2941q-69 + 1584q-68 - 1077q-67 - 2633q-66 - 2961q-65 - 1642q-64 + 1002q-63 + 2596q-62 + 2977q-61 + 1698q-60 - 929q-59 - 2540q-58 - 2956q-57 - 1752q-56 + 813q-55 + 2444q-54 + 2931q-53 + 1813q-52 - 679q-51 - 2301q-50 - 2851q-49 - 1871q-48 + 476q-47 + 2094q-46 + 2743q-45 + 1927q-44 - 250q-43 - 1826q-42 - 2551q-41 - 1953q-40 - 13q-39 + 1475q-38 + 2297q-37 + 1939q-36 + 285q-35 - 1089q-34 - 1981q-33 - 1844q-32 - 504q-31 + 675q-30 + 1562q-29 + 1682q-28 + 712q-27 - 293q-26 - 1179q-25 - 1441q-24 - 742q-23 - 33q-22 + 720q-21 + 1136q-20 + 776q-19 + 264q-18 - 409q-17 - 824q-16 - 625q-15 - 366q-14 + 84q-13 + 511q-12 + 512q-11 + 399q-10 + 52q-9 - 286q-8 - 300q-7 - 329q-6 - 168q-5 + 98q-4 + 185q-3 + 253q-2 + 148q-1 - 14 - 45q - 152q2 - 150q3 - 33q4 + 11q5 + 88q6 + 78q7 + 32q8 + 45q9 - 37q10 - 70q11 - 27q12 - 20q13 + 18q14 + 17q15 + 9q16 + 41q17 - 2q18 - 26q19 - 8q20 - 11q21 + 7q22 - q23 - 5q24 + 21q25 + 3q26 - 9q27 - 3q28 - 5q29 + 5q30 - q31 - 6q32 + 9q33 + 2q34 - 2q35 - q36 - 3q37 + 2q38 - 3q40 + 3q41 + q42 - q45 - q48 + q49 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[8, 6]] |
Out[2]= | PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], > X[5, 14, 6, 15], X[7, 16, 8, 1], X[15, 6, 16, 7], X[13, 8, 14, 9]] |
In[3]:= | GaussCode[Knot[8, 6]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -5, 7, -6, 8, -2, 3, -4, 2, -8, 5, -7, 6] |
In[4]:= | DTCode[Knot[8, 6]] |
Out[4]= | DTCode[4, 10, 14, 16, 12, 2, 8, 6] |
In[5]:= | br = BR[Knot[8, 6]] |
Out[5]= | BR[4, {-1, -1, -1, -1, -2, 1, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[8, 6]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[8, 6]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[8, 6]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[8, 6]][t] |
Out[10]= | 2 6 2 -7 - -- + - + 6 t - 2 t 2 t t |
In[11]:= | Conway[Knot[8, 6]][z] |
Out[11]= | 2 4 1 - 2 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 6], Knot[11, NonAlternating, 20], Knot[11, NonAlternating, 151], > Knot[11, NonAlternating, 152]} |
In[13]:= | {KnotDet[Knot[8, 6]], KnotSignature[Knot[8, 6]]} |
Out[13]= | {23, -2} |
In[14]:= | Jones[Knot[8, 6]][q] |
Out[14]= | -7 2 3 4 4 4 3 -1 + q - -- + -- - -- + -- - -- + - + q 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 6]} |
In[16]:= | A2Invariant[Knot[8, 6]][q] |
Out[16]= | -22 -16 -14 -10 -8 -4 2 2 4 1 + q + q - q - q - q - q + -- + q + q 2 q |
In[17]:= | HOMFLYPT[Knot[8, 6]][a, z] |
Out[17]= | 2 4 6 2 2 2 4 2 6 2 2 4 4 4 2 - a - a + a + z - 2 a z - 2 a z + a z - a z - a z |
In[18]:= | Kauffman[Knot[8, 6]][a, z] |
Out[18]= | 2 4 6 3 5 7 2 2 2 4 2 2 + a - a - a - a z - 3 a z - a z + a z - 3 z - 2 a z + 6 a z + 6 2 8 2 3 3 3 5 3 7 3 4 4 4 > 3 a z - 2 a z - a z + 5 a z + 2 a z - 4 a z + z - 6 a z - 6 4 8 4 5 3 5 5 5 7 5 2 6 4 6 > 4 a z + a z + a z - 2 a z - a z + 2 a z + a z + 3 a z + 6 6 3 7 5 7 > 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[8, 6]], Vassiliev[3][Knot[8, 6]]} |
Out[19]= | {-2, 3} |
In[20]:= | Kh[Knot[8, 6]][q, t] |
Out[20]= | -3 3 1 1 1 2 1 2 2 2 q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q t q t q t q t q t q t q t q t 2 2 2 t 3 2 > ----- + ---- + ---- + - + q t 5 2 5 3 q q t q t q t |
In[21]:= | ColouredJones[Knot[8, 6], 2][q] |
Out[21]= | -20 2 5 6 3 12 8 8 19 9 12 21 -4 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - -- + -- - 19 17 16 15 14 13 12 11 10 9 8 q q q q q q q q q q q 8 12 17 4 9 9 1 3 4 > -- - -- + -- - -- - -- + -- - - + 3 q - q + q 7 6 5 4 3 2 q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 86 |
|