© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 84Visit 84's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X6271 X14,10,15,9 X10,3,11,4 X2,13,3,14 X12,5,13,6 X16,8,1,7 X4,11,5,12 X8,16,9,15 |
Gauss Code: | {1, -4, 3, -7, 5, -1, 6, -8, 2, -3, 7, -5, 4, -2, 8, -6} |
DT (Dowker-Thistlethwaite) Code: | 6 10 12 16 14 4 2 8 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-2 + 5t-1 - 5 + 5t - 2t2 |
Conway Polynomial: | 1 - 3z2 - 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {19, -2} |
Jones Polynomial: | q-5 - 2q-4 + 3q-3 - 3q-2 + 3q-1 - 3 + 2q - q2 + q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-16 + q-10 + q-6 - q-4 - q-2 - 1 - q2 + q4 + q6 + q8 + q10 |
HOMFLY-PT Polynomial: | 2a-2 + a-2z2 - 2 - 3z2 - z4 - 2a2z2 - a2z4 + a4 + a4z2 |
Kauffman Polynomial: | - 2a-2 + 7a-2z2 - 5a-2z4 + a-2z6 - a-1z + 4a-1z3 - 4a-1z5 + a-1z7 - 2 + 10z2 - 11z4 + 3z6 + az - 3az3 - az5 + az7 - a2z2 - 3a2z4 + 2a2z6 + 2a3z - 5a3z3 + 3a3z5 + a4 - 3a4z2 + 3a4z4 + 2a5z3 + a6z2 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-3, 1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 84. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-14 - 2q-13 + q-12 + 3q-11 - 6q-10 + 3q-9 + 4q-8 - 9q-7 + 5q-6 + 5q-5 - 10q-4 + 4q-3 + 7q-2 - 9q-1 + 2 + 7q - 7q2 + 5q4 - 4q5 - q6 + 3q7 - q8 - q9 + q10 |
3 | q-27 - 2q-26 + q-25 + q-24 - 3q-22 + q-21 + 3q-20 - 2q-19 - 3q-18 + 4q-17 + 2q-16 - 5q-15 - 2q-14 + 8q-13 + q-12 - 8q-11 - 3q-10 + 9q-9 + 4q-8 - 8q-7 - 5q-6 + 6q-5 + 7q-4 - 5q-3 - 8q-2 + 3q-1 + 9 - 2q - 9q2 + q3 + 9q4 + q5 - 9q6 - q7 + 7q8 + 4q9 - 7q10 - 3q11 + 3q12 + 5q13 - 3q14 - 3q15 + 3q17 - q19 - q20 + q21 |
4 | q-44 - 2q-43 + q-42 + q-41 - 2q-40 + 3q-39 - 5q-38 + 3q-37 + q-36 - 4q-35 + 9q-34 - 9q-33 + 3q-32 - q-31 - 6q-30 + 18q-29 - 10q-28 + q-27 - 8q-26 - 9q-25 + 29q-24 - 6q-23 - 16q-21 - 16q-20 + 35q-19 - q-18 + 3q-17 - 18q-16 - 21q-15 + 34q-14 - 3q-13 + 8q-12 - 13q-11 - 22q-10 + 29q-9 - 8q-8 + 11q-7 - 7q-6 - 19q-5 + 24q-4 - 13q-3 + 13q-2 - q-1 - 17 + 17q - 15q2 + 14q3 + 4q4 - 15q5 + 10q6 - 17q7 + 13q8 + 9q9 - 9q10 + 5q11 - 18q12 + 8q13 + 10q14 - q15 + 5q16 - 17q17 + q18 + 6q19 + 3q20 + 8q21 - 11q22 - 3q23 + 2q25 + 8q26 - 4q27 - 2q28 - 2q29 - q30 + 4q31 - q34 - q35 + q36 |
5 | q-65 - 2q-64 + q-63 + q-62 - 2q-61 + q-60 + q-59 - 3q-58 + q-57 + 2q-56 - q-55 + 2q-54 + q-53 - 6q-52 - 3q-51 + 3q-50 + 7q-49 + 6q-48 - 2q-47 - 14q-46 - 12q-45 + 7q-44 + 20q-43 + 17q-42 - 7q-41 - 29q-40 - 25q-39 + 7q-38 + 36q-37 + 36q-36 - 5q-35 - 45q-34 - 43q-33 + 46q-31 + 54q-30 + 7q-29 - 50q-28 - 58q-27 - 10q-26 + 44q-25 + 60q-24 + 18q-23 - 43q-22 - 57q-21 - 18q-20 + 37q-19 + 52q-18 + 18q-17 - 32q-16 - 47q-15 - 17q-14 + 29q-13 + 40q-12 + 16q-11 - 24q-10 - 37q-9 - 15q-8 + 22q-7 + 31q-6 + 16q-5 - 17q-4 - 29q-3 - 15q-2 + 12q-1 + 23 + 16q - 6q2 - 18q3 - 15q4 + 12q6 + 14q7 + 5q8 - 5q9 - 10q10 - 9q11 + 6q13 + 7q14 + 8q15 - 10q17 - 7q18 - 5q19 + q20 + 11q21 + 11q22 - 2q23 - 6q24 - 9q25 - 9q26 + 4q27 + 12q28 + 7q29 + 2q30 - 5q31 - 12q32 - 5q33 + 4q34 + 6q35 + 8q36 + 3q37 - 7q38 - 6q39 - 3q40 + 5q42 + 6q43 - q44 - 2q45 - 2q46 - 3q47 + 3q49 + q50 - q53 - q54 + q55 |
6 | q-90 - 2q-89 + q-88 + q-87 - 2q-86 + q-85 - q-84 + 3q-83 - 5q-82 + 2q-81 + 5q-80 - 5q-79 + 3q-78 - 2q-77 + q-76 - 11q-75 + 6q-74 + 14q-73 - 6q-72 + 5q-71 - 8q-70 - 7q-69 - 20q-68 + 17q-67 + 32q-66 - 4q-65 + 3q-64 - 25q-63 - 24q-62 - 27q-61 + 39q-60 + 62q-59 + 2q-58 - 5q-57 - 53q-56 - 53q-55 - 34q-54 + 66q-53 + 103q-52 + 19q-51 - 10q-50 - 83q-49 - 93q-48 - 54q-47 + 83q-46 + 143q-45 + 51q-44 + 2q-43 - 101q-42 - 129q-41 - 87q-40 + 77q-39 + 164q-38 + 77q-37 + 27q-36 - 94q-35 - 140q-34 - 110q-33 + 57q-32 + 158q-31 + 78q-30 + 41q-29 - 75q-28 - 123q-27 - 111q-26 + 44q-25 + 138q-24 + 61q-23 + 41q-22 - 61q-21 - 99q-20 - 102q-19 + 40q-18 + 120q-17 + 45q-16 + 40q-15 - 51q-14 - 80q-13 - 98q-12 + 31q-11 + 104q-10 + 38q-9 + 47q-8 - 37q-7 - 63q-6 - 100q-5 + 13q-4 + 83q-3 + 33q-2 + 56q-1 - 16 - 41q - 98q2 - 7q3 + 55q4 + 21q5 + 58q6 + 6q7 - 11q8 - 84q9 - 21q10 + 25q11 + 48q13 + 20q14 + 19q15 - 57q16 - 20q17 + 3q18 - 22q19 + 26q20 + 18q21 + 37q22 - 27q23 - 3q24 - q25 - 33q26 + 34q29 - 9q30 + 16q31 + 11q32 - 24q33 - 12q34 - 17q35 + 15q36 - 12q37 + 21q38 + 22q39 - 3q40 - 5q41 - 17q42 + q43 - 24q44 + 8q45 + 17q46 + 9q47 + 7q48 - 3q49 + 3q50 - 24q51 - 5q52 + 2q53 + 5q54 + 7q55 + 6q56 + 11q57 - 12q58 - 5q59 - 5q60 - 2q61 + 3q63 + 10q64 - 2q65 - 2q67 - 2q68 - 3q69 - q70 + 4q71 + q73 - q76 - q77 + q78 |
7 | q-119 - 2q-118 + q-117 + q-116 - 2q-115 + q-114 - q-113 + q-112 + q-111 - 4q-110 + 5q-109 + q-108 - 4q-107 + 3q-106 - 4q-105 - q-104 + q-103 - 4q-102 + 12q-101 + 4q-100 - 6q-99 + q-98 - 14q-97 - 4q-96 + 5q-95 + q-94 + 23q-93 + 9q-92 - 14q-91 - 10q-90 - 32q-89 - 2q-88 + 23q-87 + 16q-86 + 40q-85 + 3q-84 - 36q-83 - 39q-82 - 53q-81 + 12q-80 + 62q-79 + 56q-78 + 61q-77 - 19q-76 - 88q-75 - 87q-74 - 79q-73 + 32q-72 + 122q-71 + 123q-70 + 101q-69 - 43q-68 - 154q-67 - 161q-66 - 128q-65 + 37q-64 + 179q-63 + 205q-62 + 171q-61 - 29q-60 - 200q-59 - 239q-58 - 205q-57 + 4q-56 + 196q-55 + 265q-54 + 248q-53 + 25q-52 - 191q-51 - 278q-50 - 270q-49 - 50q-48 + 171q-47 + 268q-46 + 284q-45 + 74q-44 - 151q-43 - 258q-42 - 281q-41 - 77q-40 + 134q-39 + 233q-38 + 267q-37 + 80q-36 - 122q-35 - 214q-34 - 250q-33 - 72q-32 + 118q-31 + 194q-30 + 232q-29 + 63q-28 - 110q-27 - 178q-26 - 223q-25 - 60q-24 + 108q-23 + 166q-22 + 210q-21 + 62q-20 - 94q-19 - 153q-18 - 210q-17 - 68q-16 + 84q-15 + 136q-14 + 201q-13 + 82q-12 - 61q-11 - 120q-10 - 200q-9 - 92q-8 + 41q-7 + 95q-6 + 190q-5 + 108q-4 - 14q-3 - 74q-2 - 180q-1 - 115 - 9q + 44q2 + 163q3 + 123q4 + 34q5 - 17q6 - 143q7 - 122q8 - 51q9 - 13q10 + 116q11 + 114q12 + 67q13 + 40q14 - 85q15 - 102q16 - 71q17 - 63q18 + 55q19 + 76q20 + 67q21 + 81q22 - 20q23 - 52q24 - 59q25 - 85q26 + 21q28 + 32q29 + 80q30 + 26q31 + 3q32 - 15q33 - 67q34 - 21q35 - 21q36 - 17q37 + 43q38 + 24q39 + 31q40 + 28q41 - 22q42 - 5q43 - 23q44 - 41q45 - 9q47 + 14q48 + 37q49 + 6q50 + 24q51 + 5q52 - 26q53 - 9q54 - 30q55 - 16q56 + 10q57 + 27q59 + 25q60 + q61 + 10q62 - 16q63 - 21q64 - 10q65 - 21q66 + 6q67 + 16q68 + 7q69 + 20q70 + 7q71 - 2q72 - 4q73 - 22q74 - 9q75 - 5q77 + 10q78 + 9q79 + 9q80 + 9q81 - 8q82 - 6q83 - 3q84 - 8q85 - 2q86 + 4q88 + 9q89 + q92 - 3q93 - 2q94 - 3q95 - q96 + 3q97 + q98 + q100 - q103 - q104 + q105 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[8, 4]] |
Out[2]= | PD[X[6, 2, 7, 1], X[14, 10, 15, 9], X[10, 3, 11, 4], X[2, 13, 3, 14], > X[12, 5, 13, 6], X[16, 8, 1, 7], X[4, 11, 5, 12], X[8, 16, 9, 15]] |
In[3]:= | GaussCode[Knot[8, 4]] |
Out[3]= | GaussCode[1, -4, 3, -7, 5, -1, 6, -8, 2, -3, 7, -5, 4, -2, 8, -6] |
In[4]:= | DTCode[Knot[8, 4]] |
Out[4]= | DTCode[6, 10, 12, 16, 14, 4, 2, 8] |
In[5]:= | br = BR[Knot[8, 4]] |
Out[5]= | BR[4, {-1, -1, -1, 2, -1, 2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[8, 4]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[8, 4]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[8, 4]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, {3, 5}, 1} |
In[10]:= | alex = Alexander[Knot[8, 4]][t] |
Out[10]= | 2 5 2 -5 - -- + - + 5 t - 2 t 2 t t |
In[11]:= | Conway[Knot[8, 4]][z] |
Out[11]= | 2 4 1 - 3 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 4]} |
In[13]:= | {KnotDet[Knot[8, 4]], KnotSignature[Knot[8, 4]]} |
Out[13]= | {19, -2} |
In[14]:= | Jones[Knot[8, 4]][q] |
Out[14]= | -5 2 3 3 3 2 3 -3 + q - -- + -- - -- + - + 2 q - q + q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 4]} |
In[16]:= | A2Invariant[Knot[8, 4]][q] |
Out[16]= | -16 -10 -6 -4 -2 2 4 6 8 10 -1 + q + q + q - q - q - q + q + q + q + q |
In[17]:= | HOMFLYPT[Knot[8, 4]][a, z] |
Out[17]= | 2 2 4 2 z 2 2 4 2 4 2 4 -2 + -- + a - 3 z + -- - 2 a z + a z - z - a z 2 2 a a |
In[18]:= | Kauffman[Knot[8, 4]][a, z] |
Out[18]= | 2 2 4 z 3 2 7 z 2 2 4 2 6 2 -2 - -- + a - - + a z + 2 a z + 10 z + ---- - a z - 3 a z + a z + 2 a 2 a a 3 4 4 z 3 3 3 5 3 4 5 z 2 4 4 4 > ---- - 3 a z - 5 a z + 2 a z - 11 z - ---- - 3 a z + 3 a z - a 2 a 5 6 7 4 z 5 3 5 6 z 2 6 z 7 > ---- - a z + 3 a z + 3 z + -- + 2 a z + -- + a z a 2 a a |
In[19]:= | {Vassiliev[2][Knot[8, 4]], Vassiliev[3][Knot[8, 4]]} |
Out[19]= | {-3, 1} |
In[20]:= | Kh[Knot[8, 4]][q, t] |
Out[20]= | 2 2 1 1 1 2 1 1 2 2 t -- + - + ------ + ----- + ----- + ----- + ----- + ---- + ---- + --- + q t + 3 q 11 4 9 3 7 3 7 2 5 2 5 3 q q q t q t q t q t q t q t q t 3 2 3 3 7 4 > 2 q t + q t + q t |
In[21]:= | ColouredJones[Knot[8, 4], 2][q] |
Out[21]= | -14 2 -12 3 6 3 4 9 5 5 10 4 7 9 2 + q - --- + q + --- - --- + -- + -- - -- + -- + -- - -- + -- + -- - - + 13 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q q 2 4 5 6 7 8 9 10 > 7 q - 7 q + 5 q - 4 q - q + 3 q - q - q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 84 |
|