© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 83Visit 83's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X6271 X14,10,15,9 X10,5,11,6 X12,3,13,4 X4,11,5,12 X2,13,3,14 X16,8,1,7 X8,16,9,15 |
Gauss Code: | {1, -6, 4, -5, 3, -1, 7, -8, 2, -3, 5, -4, 6, -2, 8, -7} |
DT (Dowker-Thistlethwaite) Code: | 6 12 10 16 14 4 2 8 |
Minimum Braid Representative:
Length is 10, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 4t-1 + 9 - 4t |
Conway Polynomial: | 1 - 4z2 |
Other knots with the same Alexander/Conway Polynomial: | {101, ...} |
Determinant and Signature: | {17, 0} |
Jones Polynomial: | q-4 - q-3 + 2q-2 - 3q-1 + 3 - 3q + 2q2 - q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-14 + q-12 + q-8 - q-4 - 1 - q4 + q8 + q12 + q14 |
HOMFLY-PT Polynomial: | a-4 - a-2z2 - 1 - 2z2 - a2z2 + a4 |
Kauffman Polynomial: | a-4 - 3a-4z2 + a-4z4 - 2a-3z3 + a-3z5 + a-2z2 - 2a-2z4 + a-2z6 - 4a-1z + 8a-1z3 - 4a-1z5 + a-1z7 - 1 + 8z2 - 6z4 + 2z6 - 4az + 8az3 - 4az5 + az7 + a2z2 - 2a2z4 + a2z6 - 2a3z3 + a3z5 + a4 - 3a4z2 + a4z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-4, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 83. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-12 - q-11 + 2q-9 - 3q-8 - q-7 + 5q-6 - 4q-5 - 3q-4 + 9q-3 - 5q-2 - 5q-1 + 11 - 5q - 5q2 + 9q3 - 3q4 - 4q5 + 5q6 - q7 - 3q8 + 2q9 - q11 + q12 |
3 | q-24 - q-23 + q-20 - 2q-19 + q-17 + 2q-16 - 4q-15 - q-14 + 3q-13 + 5q-12 - 4q-11 - 6q-10 + 3q-9 + 9q-8 - 2q-7 - 12q-6 + 2q-5 + 13q-4 - 15q-2 + 15 - 15q2 + 13q4 + 2q5 - 12q6 - 2q7 + 9q8 + 3q9 - 6q10 - 4q11 + 5q12 + 3q13 - q14 - 4q15 + 2q16 + q17 - 2q19 + q20 - q23 + q24 |
4 | q-40 - q-39 - q-36 + 2q-35 - 2q-34 + q-33 + q-32 - 3q-31 + 3q-30 - 4q-29 + 2q-28 + 5q-27 - 4q-26 + 4q-25 - 9q-24 + q-23 + 7q-22 - 2q-21 + 10q-20 - 14q-19 - 4q-18 + 4q-17 - q-16 + 21q-15 - 14q-14 - 9q-13 - 3q-12 - 4q-11 + 34q-10 - 12q-9 - 12q-8 - 9q-7 - 8q-6 + 42q-5 - 10q-4 - 12q-3 - 12q-2 - 10q-1 + 45 - 10q - 12q2 - 12q3 - 10q4 + 42q5 - 8q6 - 9q7 - 12q8 - 12q9 + 34q10 - 4q11 - 3q12 - 9q13 - 14q14 + 21q15 - q16 + 4q17 - 4q18 - 14q19 + 10q20 - 2q21 + 7q22 + q23 - 9q24 + 4q25 - 4q26 + 5q27 + 2q28 - 4q29 + 3q30 - 3q31 + q32 + q33 - 2q34 + 2q35 - q36 - q39 + q40 |
5 | q-60 - q-59 - q-56 + 2q-54 - q-53 + q-51 - 2q-50 - 2q-49 + 3q-48 + q-46 + 3q-45 - 2q-44 - 5q-43 + 2q-40 + 8q-39 - 5q-37 - 4q-36 - 6q-35 - q-34 + 10q-33 + 6q-32 + 3q-31 - 2q-30 - 11q-29 - 12q-28 + 2q-27 + 9q-26 + 14q-25 + 10q-24 - 7q-23 - 21q-22 - 16q-21 + 2q-20 + 22q-19 + 26q-18 + 5q-17 - 23q-16 - 35q-15 - 10q-14 + 25q-13 + 38q-12 + 16q-11 - 22q-10 - 45q-9 - 19q-8 + 24q-7 + 44q-6 + 22q-5 - 22q-4 - 47q-3 - 22q-2 + 22q-1 + 47 + 22q - 22q2 - 47q3 - 22q4 + 22q5 + 44q6 + 24q7 - 19q8 - 45q9 - 22q10 + 16q11 + 38q12 + 25q13 - 10q14 - 35q15 - 23q16 + 5q17 + 26q18 + 22q19 + 2q20 - 16q21 - 21q22 - 7q23 + 10q24 + 14q25 + 9q26 + 2q27 - 12q28 - 11q29 - 2q30 + 3q31 + 6q32 + 10q33 - q34 - 6q35 - 4q36 - 5q37 + 8q39 + 2q40 - 5q43 - 2q44 + 3q45 + q46 + 3q48 - 2q49 - 2q50 + q51 - q53 + 2q54 - q56 - q59 + q60 |
6 | q-84 - q-83 - q-80 + 3q-77 - 2q-76 + q-74 - 2q-73 - q-72 - q-71 + 6q-70 - 2q-69 + 3q-67 - 4q-66 - 3q-65 - 4q-64 + 9q-63 - q-62 + q-61 + 7q-60 - 4q-59 - 7q-58 - 11q-57 + 10q-56 - 2q-55 + 2q-54 + 15q-53 + 2q-52 - 6q-51 - 17q-50 + 7q-49 - 13q-48 - 5q-47 + 20q-46 + 12q-45 + 7q-44 - 11q-43 + 13q-42 - 29q-41 - 25q-40 + 8q-39 + 12q-38 + 21q-37 + 10q-36 + 39q-35 - 32q-34 - 44q-33 - 21q-32 - 8q-31 + 19q-30 + 29q-29 + 82q-28 - 15q-27 - 50q-26 - 50q-25 - 40q-24 + q-23 + 36q-22 + 124q-21 + 9q-20 - 45q-19 - 68q-18 - 65q-17 - 19q-16 + 34q-15 + 151q-14 + 25q-13 - 38q-12 - 76q-11 - 76q-10 - 31q-9 + 31q-8 + 163q-7 + 29q-6 - 34q-5 - 78q-4 - 78q-3 - 34q-2 + 29q-1 + 167 + 29q - 34q2 - 78q3 - 78q4 - 34q5 + 29q6 + 163q7 + 31q8 - 31q9 - 76q10 - 76q11 - 38q12 + 25q13 + 151q14 + 34q15 - 19q16 - 65q17 - 68q18 - 45q19 + 9q20 + 124q21 + 36q22 + q23 - 40q24 - 50q25 - 50q26 - 15q27 + 82q28 + 29q29 + 19q30 - 8q31 - 21q32 - 44q33 - 32q34 + 39q35 + 10q36 + 21q37 + 12q38 + 8q39 - 25q40 - 29q41 + 13q42 - 11q43 + 7q44 + 12q45 + 20q46 - 5q47 - 13q48 + 7q49 - 17q50 - 6q51 + 2q52 + 15q53 + 2q54 - 2q55 + 10q56 - 11q57 - 7q58 - 4q59 + 7q60 + q61 - q62 + 9q63 - 4q64 - 3q65 - 4q66 + 3q67 - 2q69 + 6q70 - q71 - q72 - 2q73 + q74 - 2q76 + 3q77 - q80 - q83 + q84 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[8, 3]] |
Out[2]= | PD[X[6, 2, 7, 1], X[14, 10, 15, 9], X[10, 5, 11, 6], X[12, 3, 13, 4], > X[4, 11, 5, 12], X[2, 13, 3, 14], X[16, 8, 1, 7], X[8, 16, 9, 15]] |
In[3]:= | GaussCode[Knot[8, 3]] |
Out[3]= | GaussCode[1, -6, 4, -5, 3, -1, 7, -8, 2, -3, 5, -4, 6, -2, 8, -7] |
In[4]:= | DTCode[Knot[8, 3]] |
Out[4]= | DTCode[6, 12, 10, 16, 14, 4, 2, 8] |
In[5]:= | br = BR[Knot[8, 3]] |
Out[5]= | BR[5, {-1, -1, -2, 1, 3, -2, 3, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[8, 3]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[8, 3]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[8, 3]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {FullyAmphicheiral, 2, 1, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[8, 3]][t] |
Out[10]= | 4 9 - - - 4 t t |
In[11]:= | Conway[Knot[8, 3]][z] |
Out[11]= | 2 1 - 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 3], Knot[10, 1]} |
In[13]:= | {KnotDet[Knot[8, 3]], KnotSignature[Knot[8, 3]]} |
Out[13]= | {17, 0} |
In[14]:= | Jones[Knot[8, 3]][q] |
Out[14]= | -4 -3 2 3 2 3 4 3 + q - q + -- - - - 3 q + 2 q - q + q 2 q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 3]} |
In[16]:= | A2Invariant[Knot[8, 3]][q] |
Out[16]= | -14 -12 -8 -4 4 8 12 14 -1 + q + q + q - q - q + q + q + q |
In[17]:= | HOMFLYPT[Knot[8, 3]][a, z] |
Out[17]= | 2 -4 4 2 z 2 2 -1 + a + a - 2 z - -- - a z 2 a |
In[18]:= | Kauffman[Knot[8, 3]][a, z] |
Out[18]= | 2 2 3 -4 4 4 z 2 3 z z 2 2 4 2 2 z -1 + a + a - --- - 4 a z + 8 z - ---- + -- + a z - 3 a z - ---- + a 4 2 3 a a a 3 4 4 5 5 8 z 3 3 3 4 z 2 z 2 4 4 4 z 4 z > ---- + 8 a z - 2 a z - 6 z + -- - ---- - 2 a z + a z + -- - ---- - a 4 2 3 a a a a 6 7 5 3 5 6 z 2 6 z 7 > 4 a z + a z + 2 z + -- + a z + -- + a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[8, 3]], Vassiliev[3][Knot[8, 3]]} |
Out[19]= | {-4, 0} |
In[20]:= | Kh[Knot[8, 3]][q, t] |
Out[20]= | 2 1 1 2 1 2 3 5 2 5 3 - + 2 q + ----- + ----- + ----- + ---- + --- + 2 q t + q t + 2 q t + q t + q 9 4 5 3 5 2 3 q t q t q t q t q t 9 4 > q t |
In[21]:= | ColouredJones[Knot[8, 3], 2][q] |
Out[21]= | -12 -11 2 3 -7 5 4 3 9 5 5 2 11 + q - q + -- - -- - q + -- - -- - -- + -- - -- - - - 5 q - 5 q + 9 8 6 5 4 3 2 q q q q q q q q 3 4 5 6 7 8 9 11 12 > 9 q - 3 q - 4 q + 5 q - q - 3 q + 2 q - q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 83 |
|