© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 82Visit 82's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X9,16,10,1 X13,6,14,7 X15,8,16,9 |
Gauss Code: | {-1, 4, -3, 1, -2, 7, -5, 8, -6, 3, -4, 2, -7, 5, -8, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 10 12 14 16 2 6 8 |
Minimum Braid Representative:
Length is 8, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 3t-2 - 3t-1 + 3 - 3t + 3t2 - t3 |
Conway Polynomial: | 1 - 3z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n6, ...} |
Determinant and Signature: | {17, -4} |
Jones Polynomial: | q-8 - 2q-7 + 2q-6 - 3q-5 + 3q-4 - 2q-3 + 2q-2 - q-1 + 1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-24 - q-18 - q-16 - q-12 + q-10 + q-6 + q-4 + q-2 + 1 |
HOMFLY-PT Polynomial: | 3a2 + 4a2z2 + a2z4 - 3a4 - 7a4z2 - 5a4z4 - a4z6 + a6 + 3a6z2 + a6z4 |
Kauffman Polynomial: | - 3a2 + 7a2z2 - 5a2z4 + a2z6 + a3z + 3a3z3 - 4a3z5 + a3z7 - 3a4 + 12a4z2 - 12a4z4 + 3a4z6 + a5z - a5z3 - 2a5z5 + a5z7 - a6 + 3a6z2 - 5a6z4 + 2a6z6 - a7z - 2a7z3 + 2a7z5 - a8z2 + 2a8z4 - a9z + 2a9z3 + a10z2 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, 1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 82. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-22 - 2q-21 + 3q-19 - 4q-18 + 2q-17 + 3q-16 - 6q-15 + 3q-14 + 4q-13 - 7q-12 + 2q-11 + 5q-10 - 7q-9 + q-8 + 5q-7 - 5q-6 + 5q-4 - 3q-3 - q-2 + 3q-1 - 1 - q + q2 |
3 | q-42 - 2q-41 + q-39 + 2q-38 - 2q-37 - 2q-36 + 2q-35 + q-34 - 2q-32 + q-31 - q-30 + 2q-29 - q-27 - 2q-26 + 2q-25 + q-24 - q-22 - q-21 + q-20 + q-19 + q-18 - 4q-17 + 3q-15 + 2q-14 - 6q-13 + 4q-11 + 3q-10 - 6q-9 - 2q-8 + 4q-7 + 5q-6 - 5q-5 - 3q-4 + 2q-3 + 5q-2 - 2q-1 - 3 + 3q2 - q4 - q5 + q6 |
4 | q-68 - 2q-67 + q-65 + 4q-63 - 6q-62 + q-59 + 10q-58 - 10q-57 - 2q-56 - 3q-55 + 3q-54 + 17q-53 - 11q-52 - 7q-51 - 8q-50 + 5q-49 + 25q-48 - 10q-47 - 10q-46 - 14q-45 + 3q-44 + 31q-43 - 7q-42 - 9q-41 - 18q-40 + q-39 + 32q-38 - 8q-37 - 6q-36 - 15q-35 - q-34 + 29q-33 - 10q-32 - 4q-31 - 11q-30 - 2q-29 + 25q-28 - 11q-27 - 2q-26 - 7q-25 - 3q-24 + 20q-23 - 11q-22 + q-21 - 3q-20 - 4q-19 + 14q-18 - 12q-17 + 3q-16 + q-15 - 3q-14 + 10q-13 - 12q-12 + 2q-11 + 3q-10 + 9q-8 - 12q-7 - q-6 + 2q-5 + 2q-4 + 9q-3 - 8q-2 - 3q-1 - 1 + q + 8q2 - 3q3 - 2q4 - 2q5 - q6 + 4q7 - q10 - q11 + q12 |
5 | q-100 - 2q-99 + q-97 + 2q-95 - 4q-93 - 2q-92 + 3q-91 + 2q-90 + 5q-89 - q-88 - 8q-87 - 6q-86 + 3q-85 + 10q-84 + 8q-83 - 3q-82 - 14q-81 - 13q-80 + 5q-79 + 22q-78 + 14q-77 - 9q-76 - 24q-75 - 19q-74 + 7q-73 + 36q-72 + 23q-71 - 13q-70 - 36q-69 - 29q-68 + 9q-67 + 45q-66 + 33q-65 - 10q-64 - 43q-63 - 39q-62 + 5q-61 + 46q-60 + 39q-59 - 4q-58 - 42q-57 - 40q-56 + q-55 + 41q-54 + 39q-53 - 2q-52 - 37q-51 - 36q-50 + q-49 + 34q-48 + 35q-47 - 33q-45 - 32q-44 + 27q-42 + 33q-41 + 4q-40 - 29q-39 - 29q-38 - 3q-37 + 20q-36 + 29q-35 + 9q-34 - 22q-33 - 25q-32 - 6q-31 + 12q-30 + 22q-29 + 12q-28 - 14q-27 - 18q-26 - 7q-25 + 5q-24 + 14q-23 + 11q-22 - 8q-21 - 8q-20 - 5q-19 + 7q-17 + 6q-16 - 5q-15 - 3q-14 + q-12 + 3q-11 + 3q-10 - 7q-9 - 3q-8 + 2q-7 + 4q-6 + 5q-5 + 2q-4 - 7q-3 - 6q-2 - q-1 + 3 + 7q + 5q2 - 4q3 - 5q4 - 4q5 - q6 + 4q7 + 6q8 - 2q10 - 2q11 - 3q12 + 3q14 + q15 - q18 - q19 + q20 |
6 | q-138 - 2q-137 + q-135 + 2q-133 - 2q-132 + 2q-131 - 6q-130 + q-129 + 4q-128 + 5q-126 - 4q-125 + q-124 - 14q-123 + 4q-122 + 8q-121 + 2q-120 + 9q-119 - 7q-118 - 3q-117 - 22q-116 + 10q-115 + 13q-114 + 4q-113 + 11q-112 - 13q-111 - 9q-110 - 26q-109 + 22q-108 + 22q-107 + 3q-106 + 7q-105 - 27q-104 - 18q-103 - 23q-102 + 40q-101 + 37q-100 + 3q-99 - 4q-98 - 45q-97 - 32q-96 - 23q-95 + 59q-94 + 56q-93 + 13q-92 - 8q-91 - 61q-90 - 50q-89 - 33q-88 + 68q-87 + 70q-86 + 25q-85 - q-84 - 64q-83 - 60q-82 - 45q-81 + 64q-80 + 70q-79 + 29q-78 + 7q-77 - 57q-76 - 56q-75 - 49q-74 + 56q-73 + 62q-72 + 25q-71 + 11q-70 - 49q-69 - 47q-68 - 49q-67 + 48q-66 + 55q-65 + 23q-64 + 15q-63 - 42q-62 - 40q-61 - 54q-60 + 38q-59 + 51q-58 + 25q-57 + 23q-56 - 34q-55 - 35q-54 - 60q-53 + 22q-52 + 45q-51 + 29q-50 + 33q-49 - 23q-48 - 30q-47 - 65q-46 + 6q-45 + 35q-44 + 30q-43 + 40q-42 - 10q-41 - 20q-40 - 65q-39 - 8q-38 + 21q-37 + 25q-36 + 42q-35 + 3q-34 - 5q-33 - 57q-32 - 16q-31 + 6q-30 + 13q-29 + 35q-28 + 10q-27 + 11q-26 - 42q-25 - 14q-24 - 3q-23 + 21q-21 + 8q-20 + 20q-19 - 26q-18 - 6q-17 - 2q-16 - 5q-15 + 8q-14 + q-13 + 18q-12 - 19q-11 + 3q-9 - q-8 + 4q-7 - 2q-6 + 12q-5 - 19q-4 - 2q-3 + 3q-2 + 3q-1 + 6 + 2q + 11q2 - 16q3 - 6q4 - 3q5 + q6 + 4q7 + 5q8 + 13q9 - 8q10 - 4q11 - 5q12 - 3q13 - q14 + 2q15 + 10q16 - q17 - 2q19 - 2q20 - 3q21 - q22 + 4q23 + q25 - q28 - q29 + q30 |
7 | q-182 - 2q-181 + q-179 + 2q-177 - 2q-176 - 3q-173 + 2q-172 + 2q-171 + 5q-169 - 4q-168 - 4q-167 - q-166 - 6q-165 + 6q-164 + 5q-163 + 2q-162 + 8q-161 - 6q-160 - 8q-159 - 4q-158 - 10q-157 + 8q-156 + 10q-155 + 3q-154 + 11q-153 - 7q-152 - 7q-151 - q-150 - 15q-149 + 4q-148 + 5q-147 + 11q-145 - 2q-144 + 6q-143 + 9q-142 - 11q-141 - 7q-140 - 16q-139 - 19q-138 + 6q-137 + 12q-136 + 30q-135 + 36q-134 + 4q-133 - 16q-132 - 49q-131 - 54q-130 - 14q-129 + 17q-128 + 59q-127 + 73q-126 + 35q-125 - 12q-124 - 70q-123 - 92q-122 - 50q-121 + 2q-120 + 70q-119 + 103q-118 + 67q-117 + 13q-116 - 66q-115 - 109q-114 - 80q-113 - 25q-112 + 59q-111 + 108q-110 + 84q-109 + 33q-108 - 49q-107 - 103q-106 - 84q-105 - 37q-104 + 45q-103 + 97q-102 + 76q-101 + 36q-100 - 41q-99 - 90q-98 - 68q-97 - 32q-96 + 38q-95 + 85q-94 + 62q-93 + 30q-92 - 40q-91 - 80q-90 - 52q-89 - 28q-88 + 33q-87 + 73q-86 + 50q-85 + 30q-84 - 31q-83 - 67q-82 - 43q-81 - 33q-80 + 21q-79 + 57q-78 + 41q-77 + 38q-76 - 11q-75 - 49q-74 - 36q-73 - 42q-72 + q-71 + 36q-70 + 30q-69 + 49q-68 + 13q-67 - 27q-66 - 25q-65 - 52q-64 - 22q-63 + 12q-62 + 16q-61 + 55q-60 + 37q-59 + q-58 - 9q-57 - 57q-56 - 44q-55 - 12q-54 - 5q-53 + 52q-52 + 54q-51 + 28q-50 + 14q-49 - 49q-48 - 54q-47 - 35q-46 - 30q-45 + 36q-44 + 54q-43 + 44q-42 + 40q-41 - 25q-40 - 46q-39 - 44q-38 - 52q-37 + 11q-36 + 36q-35 + 41q-34 + 55q-33 + 3q-32 - 22q-31 - 32q-30 - 58q-29 - 11q-28 + 10q-27 + 20q-26 + 50q-25 + 17q-24 + 2q-23 - 7q-22 - 43q-21 - 17q-20 - 7q-19 - q-18 + 30q-17 + 12q-16 + 8q-15 + 12q-14 - 23q-13 - 8q-12 - 6q-11 - 9q-10 + 16q-9 + q-8 + 2q-7 + 10q-6 - 14q-5 - q-4 + q-3 - 5q-2 + 14q-1 + 2 - 2q + 4q2 - 16q3 - 4q4 - 4q6 + 13q7 + 8q8 + 5q9 + 6q10 - 13q11 - 8q12 - 4q13 - 9q14 + 5q15 + 6q16 + 8q17 + 11q18 - 4q19 - 4q20 - 3q21 - 8q22 - 3q23 - q24 + 3q25 + 9q26 + q27 + q29 - 3q30 - 2q31 - 3q32 - q33 + 3q34 + q35 + q37 - q40 - q41 + q42 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[8, 2]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], > X[7, 14, 8, 15], X[9, 16, 10, 1], X[13, 6, 14, 7], X[15, 8, 16, 9]] |
In[3]:= | GaussCode[Knot[8, 2]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 7, -5, 8, -6, 3, -4, 2, -7, 5, -8, 6] |
In[4]:= | DTCode[Knot[8, 2]] |
Out[4]= | DTCode[4, 10, 12, 14, 16, 2, 6, 8] |
In[5]:= | br = BR[Knot[8, 2]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -1, 2, -1, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[8, 2]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[8, 2]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[8, 2]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, {4, 5}, 1} |
In[10]:= | alex = Alexander[Knot[8, 2]][t] |
Out[10]= | -3 3 3 2 3 3 - t + -- - - - 3 t + 3 t - t 2 t t |
In[11]:= | Conway[Knot[8, 2]][z] |
Out[11]= | 4 6 1 - 3 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 2], Knot[11, NonAlternating, 6]} |
In[13]:= | {KnotDet[Knot[8, 2]], KnotSignature[Knot[8, 2]]} |
Out[13]= | {17, -4} |
In[14]:= | Jones[Knot[8, 2]][q] |
Out[14]= | -8 2 2 3 3 2 2 1 1 + q - -- + -- - -- + -- - -- + -- - - 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 2]} |
In[16]:= | A2Invariant[Knot[8, 2]][q] |
Out[16]= | -24 -18 -16 -12 -10 -6 -4 -2 1 + q - q - q - q + q + q + q + q |
In[17]:= | HOMFLYPT[Knot[8, 2]][a, z] |
Out[17]= | 2 4 6 2 2 4 2 6 2 2 4 4 4 6 4 4 6 3 a - 3 a + a + 4 a z - 7 a z + 3 a z + a z - 5 a z + a z - a z |
In[18]:= | Kauffman[Knot[8, 2]][a, z] |
Out[18]= | 2 4 6 3 5 7 9 2 2 4 2 6 2 -3 a - 3 a - a + a z + a z - a z - a z + 7 a z + 12 a z + 3 a z - 8 2 10 2 3 3 5 3 7 3 9 3 2 4 4 4 > a z + a z + 3 a z - a z - 2 a z + 2 a z - 5 a z - 12 a z - 6 4 8 4 3 5 5 5 7 5 2 6 4 6 > 5 a z + 2 a z - 4 a z - 2 a z + 2 a z + a z + 3 a z + 6 6 3 7 5 7 > 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[8, 2]], Vassiliev[3][Knot[8, 2]]} |
Out[19]= | {0, 1} |
In[20]:= | Kh[Knot[8, 2]][q, t] |
Out[20]= | -5 2 1 1 1 1 1 2 1 q + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 3 17 6 15 5 13 5 13 4 11 4 11 3 9 3 q q t q t q t q t q t q t q t 1 2 1 1 t 2 > ----- + ----- + ---- + ---- + -- + q t 9 2 7 2 7 5 3 q t q t q t q t q |
In[21]:= | ColouredJones[Knot[8, 2], 2][q] |
Out[21]= | -22 2 3 4 2 3 6 3 4 7 2 5 -1 + q - --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + --- - 21 19 18 17 16 15 14 13 12 11 10 q q q q q q q q q q q 7 -8 5 5 5 3 -2 3 2 > -- + q + -- - -- + -- - -- - q + - - q + q 9 7 6 4 3 q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 82 |
|