© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 812Visit 812's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 812's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X10,8,11,7 X8394 X2,9,3,10 X14,6,15,5 X16,11,1,12 X12,15,13,16 X6,14,7,13 |
Gauss Code: | {1, -4, 3, -1, 5, -8, 2, -3, 4, -2, 6, -7, 8, -5, 7, -6} |
DT (Dowker-Thistlethwaite) Code: | 4 8 14 10 2 16 6 12 |
Minimum Braid Representative:
Length is 8, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-2 - 7t-1 + 13 - 7t + t2 |
Conway Polynomial: | 1 - 3z2 + z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {29, 0} |
Jones Polynomial: | q-4 - 2q-3 + 4q-2 - 5q-1 + 5 - 5q + 4q2 - 2q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-14 + q-12 - q-10 + q-8 - q-4 + q-2 - 1 + q2 - q4 + q8 - q10 + q12 + q14 |
HOMFLY-PT Polynomial: | a-4 - a-2 - 2a-2z2 + 1 + z2 + z4 - a2 - 2a2z2 + a4 |
Kauffman Polynomial: | a-4 - 2a-4z2 + a-4z4 + a-3z - 3a-3z3 + 2a-3z5 + a-2 - 2a-2z2 - a-2z4 + 2a-2z6 - 3a-1z3 + 2a-1z5 + a-1z7 + 1 - 4z4 + 4z6 - 3az3 + 2az5 + az7 + a2 - 2a2z2 - a2z4 + 2a2z6 + a3z - 3a3z3 + 2a3z5 + a4 - 2a4z2 + a4z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-3, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 812. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-12 - 2q-11 + 6q-9 - 8q-8 - 3q-7 + 18q-6 - 15q-5 - 10q-4 + 30q-3 - 18q-2 - 16q-1 + 35 - 16q - 18q2 + 30q3 - 10q4 - 15q5 + 18q6 - 3q7 - 8q8 + 6q9 - 2q11 + q12 |
3 | q-24 - 2q-23 + 2q-21 + 3q-20 - 7q-19 - 5q-18 + 11q-17 + 13q-16 - 18q-15 - 22q-14 + 20q-13 + 40q-12 - 26q-11 - 54q-10 + 23q-9 + 73q-8 - 20q-7 - 88q-6 + 15q-5 + 100q-4 - 9q-3 - 108q-2 + 4q-1 + 109 + 4q - 108q2 - 9q3 + 100q4 + 15q5 - 88q6 - 20q7 + 73q8 + 23q9 - 54q10 - 26q11 + 40q12 + 20q13 - 22q14 - 18q15 + 13q16 + 11q17 - 5q18 - 7q19 + 3q20 + 2q21 - 2q23 + q24 |
4 | q-40 - 2q-39 + 2q-37 - q-36 + 4q-35 - 9q-34 - q-33 + 10q-32 + q-31 + 13q-30 - 32q-29 - 14q-28 + 25q-27 + 19q-26 + 46q-25 - 72q-24 - 58q-23 + 23q-22 + 54q-21 + 130q-20 - 105q-19 - 134q-18 - 21q-17 + 81q-16 + 255q-15 - 101q-14 - 209q-13 - 104q-12 + 77q-11 + 381q-10 - 64q-9 - 257q-8 - 187q-7 + 52q-6 + 464q-5 - 20q-4 - 267q-3 - 244q-2 + 18q-1 + 493 + 18q - 244q2 - 267q3 - 20q4 + 464q5 + 52q6 - 187q7 - 257q8 - 64q9 + 381q10 + 77q11 - 104q12 - 209q13 - 101q14 + 255q15 + 81q16 - 21q17 - 134q18 - 105q19 + 130q20 + 54q21 + 23q22 - 58q23 - 72q24 + 46q25 + 19q26 + 25q27 - 14q28 - 32q29 + 13q30 + q31 + 10q32 - q33 - 9q34 + 4q35 - q36 + 2q37 - 2q39 + q40 |
5 | q-60 - 2q-59 + 2q-57 - q-56 + 2q-54 - 5q-53 - 2q-52 + 9q-51 + 3q-50 - 2q-49 - 3q-48 - 18q-47 - 8q-46 + 22q-45 + 32q-44 + 14q-43 - 20q-42 - 63q-41 - 52q-40 + 30q-39 + 99q-38 + 101q-37 - q-36 - 149q-35 - 185q-34 - 39q-33 + 177q-32 + 285q-31 + 144q-30 - 202q-29 - 411q-28 - 251q-27 + 169q-26 + 520q-25 + 428q-24 - 118q-23 - 632q-22 - 588q-21 + 23q-20 + 695q-19 + 777q-18 + 91q-17 - 748q-16 - 931q-15 - 217q-14 + 766q-13 + 1064q-12 + 339q-11 - 761q-10 - 1171q-9 - 444q-8 + 743q-7 + 1238q-6 + 535q-5 - 705q-4 - 1286q-3 - 605q-2 + 666q-1 + 1291 + 666q - 605q2 - 1286q3 - 705q4 + 535q5 + 1238q6 + 743q7 - 444q8 - 1171q9 - 761q10 + 339q11 + 1064q12 + 766q13 - 217q14 - 931q15 - 748q16 + 91q17 + 777q18 + 695q19 + 23q20 - 588q21 - 632q22 - 118q23 + 428q24 + 520q25 + 169q26 - 251q27 - 411q28 - 202q29 + 144q30 + 285q31 + 177q32 - 39q33 - 185q34 - 149q35 - q36 + 101q37 + 99q38 + 30q39 - 52q40 - 63q41 - 20q42 + 14q43 + 32q44 + 22q45 - 8q46 - 18q47 - 3q48 - 2q49 + 3q50 + 9q51 - 2q52 - 5q53 + 2q54 - q56 + 2q57 - 2q59 + q60 |
6 | q-84 - 2q-83 + 2q-81 - q-80 - 2q-78 + 6q-77 - 6q-76 - 3q-75 + 11q-74 - q-73 - 2q-72 - 12q-71 + 11q-70 - 16q-69 - 7q-68 + 38q-67 + 16q-66 + 3q-65 - 41q-64 + q-63 - 68q-62 - 33q-61 + 98q-60 + 93q-59 + 77q-58 - 58q-57 - 37q-56 - 237q-55 - 183q-54 + 124q-53 + 255q-52 + 331q-51 + 93q-50 + 5q-49 - 556q-48 - 604q-47 - 102q-46 + 356q-45 + 782q-44 + 595q-43 + 402q-42 - 827q-41 - 1294q-40 - 786q-39 + 85q-38 + 1183q-37 + 1419q-36 + 1336q-35 - 712q-34 - 1957q-33 - 1851q-32 - 715q-31 + 1194q-30 + 2244q-29 + 2655q-28 - 93q-27 - 2262q-26 - 2933q-25 - 1845q-24 + 746q-23 + 2752q-22 + 3943q-21 + 806q-20 - 2153q-19 - 3708q-18 - 2911q-17 + 70q-16 + 2891q-15 + 4876q-14 + 1634q-13 - 1812q-12 - 4100q-11 - 3656q-10 - 556q-9 + 2791q-8 + 5381q-7 + 2212q-6 - 1428q-5 - 4191q-4 - 4055q-3 - 1036q-2 + 2568q-1 + 5533 + 2568q - 1036q2 - 4055q3 - 4191q4 - 1428q5 + 2212q6 + 5381q7 + 2791q8 - 556q9 - 3656q10 - 4100q11 - 1812q12 + 1634q13 + 4876q14 + 2891q15 + 70q16 - 2911q17 - 3708q18 - 2153q19 + 806q20 + 3943q21 + 2752q22 + 746q23 - 1845q24 - 2933q25 - 2262q26 - 93q27 + 2655q28 + 2244q29 + 1194q30 - 715q31 - 1851q32 - 1957q33 - 712q34 + 1336q35 + 1419q36 + 1183q37 + 85q38 - 786q39 - 1294q40 - 827q41 + 402q42 + 595q43 + 782q44 + 356q45 - 102q46 - 604q47 - 556q48 + 5q49 + 93q50 + 331q51 + 255q52 + 124q53 - 183q54 - 237q55 - 37q56 - 58q57 + 77q58 + 93q59 + 98q60 - 33q61 - 68q62 + q63 - 41q64 + 3q65 + 16q66 + 38q67 - 7q68 - 16q69 + 11q70 - 12q71 - 2q72 - q73 + 11q74 - 3q75 - 6q76 + 6q77 - 2q78 - q80 + 2q81 - 2q83 + q84 |
7 | q-112 - 2q-111 + 2q-109 - q-108 - 2q-106 + 2q-105 + 5q-104 - 7q-103 - q-102 + 7q-101 - q-100 - 12q-98 - 2q-97 + 17q-96 - 13q-95 + 3q-94 + 22q-93 + 7q-92 + 7q-91 - 43q-90 - 35q-89 + 10q-88 - 26q-87 + 25q-86 + 81q-85 + 63q-84 + 69q-83 - 77q-82 - 148q-81 - 104q-80 - 156q-79 + 17q-78 + 206q-77 + 282q-76 + 356q-75 + 55q-74 - 268q-73 - 435q-72 - 661q-71 - 340q-70 + 204q-69 + 654q-68 + 1130q-67 + 788q-66 + 49q-65 - 750q-64 - 1693q-63 - 1545q-62 - 598q-61 + 680q-60 + 2252q-59 + 2499q-58 + 1547q-57 - 198q-56 - 2717q-55 - 3672q-54 - 2860q-53 - 655q-52 + 2844q-51 + 4768q-50 + 4537q-49 + 2104q-48 - 2562q-47 - 5828q-46 - 6373q-45 - 3891q-44 + 1784q-43 + 6441q-42 + 8212q-41 + 6132q-40 - 511q-39 - 6764q-38 - 9928q-37 - 8380q-36 - 1108q-35 + 6552q-34 + 11294q-33 + 10685q-32 + 2988q-31 - 6052q-30 - 12328q-29 - 12727q-28 - 4870q-27 + 5238q-26 + 12969q-25 + 14476q-24 + 6663q-23 - 4286q-22 - 13308q-21 - 15867q-20 - 8241q-19 + 3344q-18 + 13388q-17 + 16876q-16 + 9543q-15 - 2421q-14 - 13285q-13 - 17618q-12 - 10578q-11 + 1640q-10 + 13082q-9 + 18052q-8 + 11361q-7 - 915q-6 - 12789q-5 - 18322q-4 - 11965q-3 + 311q-2 + 12426q-1 + 18379 + 12426q + 311q2 - 11965q3 - 18322q4 - 12789q5 - 915q6 + 11361q7 + 18052q8 + 13082q9 + 1640q10 - 10578q11 - 17618q12 - 13285q13 - 2421q14 + 9543q15 + 16876q16 + 13388q17 + 3344q18 - 8241q19 - 15867q20 - 13308q21 - 4286q22 + 6663q23 + 14476q24 + 12969q25 + 5238q26 - 4870q27 - 12727q28 - 12328q29 - 6052q30 + 2988q31 + 10685q32 + 11294q33 + 6552q34 - 1108q35 - 8380q36 - 9928q37 - 6764q38 - 511q39 + 6132q40 + 8212q41 + 6441q42 + 1784q43 - 3891q44 - 6373q45 - 5828q46 - 2562q47 + 2104q48 + 4537q49 + 4768q50 + 2844q51 - 655q52 - 2860q53 - 3672q54 - 2717q55 - 198q56 + 1547q57 + 2499q58 + 2252q59 + 680q60 - 598q61 - 1545q62 - 1693q63 - 750q64 + 49q65 + 788q66 + 1130q67 + 654q68 + 204q69 - 340q70 - 661q71 - 435q72 - 268q73 + 55q74 + 356q75 + 282q76 + 206q77 + 17q78 - 156q79 - 104q80 - 148q81 - 77q82 + 69q83 + 63q84 + 81q85 + 25q86 - 26q87 + 10q88 - 35q89 - 43q90 + 7q91 + 7q92 + 22q93 + 3q94 - 13q95 + 17q96 - 2q97 - 12q98 - q100 + 7q101 - q102 - 7q103 + 5q104 + 2q105 - 2q106 - q108 + 2q109 - 2q111 + q112 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[8, 12]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 8, 11, 7], X[8, 3, 9, 4], X[2, 9, 3, 10], > X[14, 6, 15, 5], X[16, 11, 1, 12], X[12, 15, 13, 16], X[6, 14, 7, 13]] |
In[3]:= | GaussCode[Knot[8, 12]] |
Out[3]= | GaussCode[1, -4, 3, -1, 5, -8, 2, -3, 4, -2, 6, -7, 8, -5, 7, -6] |
In[4]:= | DTCode[Knot[8, 12]] |
Out[4]= | DTCode[4, 8, 14, 10, 2, 16, 6, 12] |
In[5]:= | br = BR[Knot[8, 12]] |
Out[5]= | BR[5, {-1, 2, -1, -3, 2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 8} |
In[7]:= | BraidIndex[Knot[8, 12]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[8, 12]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[8, 12]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {FullyAmphicheiral, 2, 2, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[8, 12]][t] |
Out[10]= | -2 7 2 13 + t - - - 7 t + t t |
In[11]:= | Conway[Knot[8, 12]][z] |
Out[11]= | 2 4 1 - 3 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 12]} |
In[13]:= | {KnotDet[Knot[8, 12]], KnotSignature[Knot[8, 12]]} |
Out[13]= | {29, 0} |
In[14]:= | Jones[Knot[8, 12]][q] |
Out[14]= | -4 2 4 5 2 3 4 5 + q - -- + -- - - - 5 q + 4 q - 2 q + q 3 2 q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 12]} |
In[16]:= | A2Invariant[Knot[8, 12]][q] |
Out[16]= | -14 -12 -10 -8 -4 -2 2 4 8 10 12 14 -1 + q + q - q + q - q + q + q - q + q - q + q + q |
In[17]:= | HOMFLYPT[Knot[8, 12]][a, z] |
Out[17]= | 2 -4 -2 2 4 2 2 z 2 2 4 1 + a - a - a + a + z - ---- - 2 a z + z 2 a |
In[18]:= | Kauffman[Knot[8, 12]][a, z] |
Out[18]= | 2 2 3 -4 -2 2 4 z 3 2 z 2 z 2 2 4 2 3 z 1 + a + a + a + a + -- + a z - ---- - ---- - 2 a z - 2 a z - ---- - 3 4 2 3 a a a a 3 4 4 5 5 3 z 3 3 3 4 z z 2 4 4 4 2 z 2 z > ---- - 3 a z - 3 a z - 4 z + -- - -- - a z + a z + ---- + ---- + a 4 2 3 a a a a 6 7 5 3 5 6 2 z 2 6 z 7 > 2 a z + 2 a z + 4 z + ---- + 2 a z + -- + a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[8, 12]], Vassiliev[3][Knot[8, 12]]} |
Out[19]= | {-3, 0} |
In[20]:= | Kh[Knot[8, 12]][q, t] |
Out[20]= | 3 1 1 1 3 1 2 3 3 - + 3 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 3 q t + 2 q t + q 9 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t 3 2 5 2 5 3 7 3 9 4 > q t + 3 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[8, 12], 2][q] |
Out[21]= | -12 2 6 8 3 18 15 10 30 18 16 2 35 + q - --- + -- - -- - -- + -- - -- - -- + -- - -- - -- - 16 q - 18 q + 11 9 8 7 6 5 4 3 2 q q q q q q q q q q 3 4 5 6 7 8 9 11 12 > 30 q - 10 q - 15 q + 18 q - 3 q - 8 q + 6 q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 812 |
|