© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 811Visit 811's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 811's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X9,16,10,1 X15,6,16,7 X7,14,8,15 X13,8,14,9 |
Gauss Code: | {-1, 4, -3, 1, -2, 6, -7, 8, -5, 3, -4, 2, -8, 7, -6, 5} |
DT (Dowker-Thistlethwaite) Code: | 4 10 12 14 16 2 8 6 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-2 + 7t-1 - 9 + 7t - 2t2 |
Conway Polynomial: | 1 - z2 - 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {10147, K11n122, ...} |
Determinant and Signature: | {27, -2} |
Jones Polynomial: | q-7 - 2q-6 + 3q-5 - 5q-4 + 5q-3 - 4q-2 + 4q-1 - 2 + q |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-22 + q-16 - 2q-14 - q-12 - q-10 + 2q-6 + 2q-2 + q4 |
HOMFLY-PT Polynomial: | 1 + z2 + a2 - a2z2 - a2z4 - 2a4 - 2a4z2 - a4z4 + a6 + a6z2 |
Kauffman Polynomial: | 1 - 2z2 + z4 - 3az3 + 2az5 - a2 - 2a2z4 + 2a2z6 + a3z - 2a3z3 + a3z5 + a3z7 - 2a4 + 6a4z2 - 7a4z4 + 4a4z6 + 3a5z - 3a5z3 + a5z5 + a5z7 - a6 + 2a6z2 - 3a6z4 + 2a6z6 + 2a7z - 4a7z3 + 2a7z5 - 2a8z2 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-1, 2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 811. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 2q-19 + 5q-17 - 7q-16 - 2q-15 + 14q-14 - 12q-13 - 7q-12 + 25q-11 - 16q-10 - 13q-9 + 29q-8 - 15q-7 - 14q-6 + 25q-5 - 9q-4 - 12q-3 + 16q-2 - 3q-1 - 7 + 6q - 2q3 + q4 |
3 | q-39 - 2q-38 + 2q-36 + 2q-35 - 6q-34 - 3q-33 + 9q-32 + 8q-31 - 14q-30 - 14q-29 + 18q-28 + 24q-27 - 20q-26 - 37q-25 + 22q-24 + 47q-23 - 18q-22 - 64q-21 + 20q-20 + 70q-19 - 13q-18 - 78q-17 + 10q-16 + 81q-15 - 7q-14 - 78q-13 + 76q-11 + q-10 - 63q-9 - 11q-8 + 57q-7 + 11q-6 - 41q-5 - 17q-4 + 33q-3 + 13q-2 - 18q-1 - 14 + 12q + 9q2 - 5q3 - 6q4 + 3q5 + 2q6 - 2q8 + q9 |
4 | q-64 - 2q-63 + 2q-61 - q-60 + 3q-59 - 8q-58 + q-57 + 9q-56 - 2q-55 + 8q-54 - 24q-53 - 4q-52 + 23q-51 + 6q-50 + 24q-49 - 54q-48 - 27q-47 + 31q-46 + 29q-45 + 70q-44 - 84q-43 - 74q-42 + 12q-41 + 53q-40 + 149q-39 - 93q-38 - 128q-37 - 35q-36 + 60q-35 + 239q-34 - 83q-33 - 169q-32 - 86q-31 + 50q-30 + 303q-29 - 62q-28 - 183q-27 - 124q-26 + 33q-25 + 329q-24 - 38q-23 - 176q-22 - 142q-21 + 12q-20 + 313q-19 - 12q-18 - 141q-17 - 143q-16 - 19q-15 + 263q-14 + 15q-13 - 84q-12 - 124q-11 - 52q-10 + 185q-9 + 32q-8 - 25q-7 - 86q-6 - 66q-5 + 102q-4 + 27q-3 + 12q-2 - 40q-1 - 52 + 40q + 11q2 + 18q3 - 11q4 - 26q5 + 13q6 + 8q8 - q9 - 8q10 + 4q11 - q12 + 2q13 - 2q15 + q16 |
5 | q-95 - 2q-94 + 2q-92 - q-91 + q-89 - 4q-88 + 8q-86 + q-85 - 5q-84 - 4q-83 - 9q-82 + q-81 + 20q-80 + 15q-79 - 5q-78 - 23q-77 - 32q-76 - 10q-75 + 39q-74 + 56q-73 + 28q-72 - 38q-71 - 90q-70 - 69q-69 + 29q-68 + 123q-67 + 127q-66 + 6q-65 - 151q-64 - 199q-63 - 67q-62 + 164q-61 + 280q-60 + 145q-59 - 148q-58 - 356q-57 - 255q-56 + 125q-55 + 425q-54 + 347q-53 - 66q-52 - 467q-51 - 471q-50 + 20q-49 + 513q-48 + 533q-47 + 54q-46 - 519q-45 - 624q-44 - 103q-43 + 535q-42 + 660q-41 + 154q-40 - 521q-39 - 700q-38 - 195q-37 + 509q-36 + 720q-35 + 224q-34 - 487q-33 - 710q-32 - 261q-31 + 445q-30 + 713q-29 + 276q-28 - 402q-27 - 664q-26 - 312q-25 + 326q-24 + 640q-23 + 320q-22 - 261q-21 - 549q-20 - 346q-19 + 162q-18 + 495q-17 + 329q-16 - 86q-15 - 373q-14 - 328q-13 + 297q-11 + 279q-10 + 46q-9 - 176q-8 - 238q-7 - 93q-6 + 115q-5 + 170q-4 + 91q-3 - 36q-2 - 116q-1 - 90 + 9q + 65q2 + 62q3 + 18q4 - 36q5 - 42q6 - 12q7 + 9q8 + 23q9 + 15q10 - 6q11 - 13q12 - q13 - 2q14 + 2q15 + 7q16 - 2q17 - 4q18 + 2q19 - q21 + 2q22 - 2q24 + q25 |
6 | q-132 - 2q-131 + 2q-129 - q-128 - 2q-126 + 5q-125 - 5q-124 - q-123 + 10q-122 - 3q-121 - 4q-120 - 11q-119 + 11q-118 - 8q-117 + q-116 + 31q-115 - q-114 - 13q-113 - 38q-112 + 11q-111 - 23q-110 + 5q-109 + 82q-108 + 31q-107 - 6q-106 - 87q-105 - 19q-104 - 93q-103 - 26q-102 + 156q-101 + 134q-100 + 88q-99 - 92q-98 - 64q-97 - 280q-96 - 192q-95 + 152q-94 + 278q-93 + 339q-92 + 84q-91 + 14q-90 - 534q-89 - 565q-88 - 95q-87 + 296q-86 + 669q-85 + 511q-84 + 382q-83 - 664q-82 - 1036q-81 - 629q-80 + 29q-79 + 870q-78 + 1050q-77 + 1042q-76 - 526q-75 - 1392q-74 - 1275q-73 - 486q-72 + 823q-71 + 1479q-70 + 1785q-69 - 180q-68 - 1526q-67 - 1804q-66 - 1038q-65 + 598q-64 + 1698q-63 + 2373q-62 + 194q-61 - 1484q-60 - 2120q-59 - 1445q-58 + 341q-57 + 1749q-56 + 2720q-55 + 468q-54 - 1367q-53 - 2251q-52 - 1676q-51 + 136q-50 + 1703q-49 + 2858q-48 + 652q-47 - 1213q-46 - 2252q-45 - 1784q-44 - 48q-43 + 1576q-42 + 2839q-41 + 803q-40 - 982q-39 - 2120q-38 - 1812q-37 - 282q-36 + 1318q-35 + 2660q-34 + 955q-33 - 618q-32 - 1805q-31 - 1736q-30 - 580q-29 + 881q-28 + 2276q-27 + 1056q-26 - 143q-25 - 1280q-24 - 1487q-23 - 837q-22 + 322q-21 + 1667q-20 + 995q-19 + 291q-18 - 638q-17 - 1035q-16 - 895q-15 - 164q-14 + 950q-13 + 715q-12 + 489q-11 - 100q-10 - 493q-9 - 690q-8 - 382q-7 + 360q-6 + 329q-5 + 403q-4 + 154q-3 - 83q-2 - 361q-1 - 319 + 57q + 47q2 + 193q3 + 148q4 + 79q5 - 118q6 - 154q7 - 6q8 - 48q9 + 47q10 + 59q11 + 71q12 - 22q13 - 48q14 + 9q15 - 34q16 + 9q18 + 29q19 - 5q20 - 12q21 + 12q22 - 10q23 - 2q24 - 2q25 + 9q26 - 3q27 - 5q28 + 6q29 - 2q30 - q32 + 2q33 - 2q35 + q36 |
7 | q-175 - 2q-174 + 2q-172 - q-171 - 2q-169 + 2q-168 + 4q-167 - 6q-166 + q-165 + 6q-164 - 3q-163 - 2q-162 - 10q-161 + 16q-159 - 6q-158 + 6q-157 + 14q-156 - 8q-155 - 6q-154 - 37q-153 - 16q-152 + 33q-151 + 7q-150 + 34q-149 + 42q-148 - 6q-147 - 11q-146 - 95q-145 - 85q-144 + 15q-143 + 10q-142 + 106q-141 + 141q-140 + 66q-139 + 40q-138 - 160q-137 - 241q-136 - 145q-135 - 129q-134 + 127q-133 + 318q-132 + 313q-131 + 331q-130 - 35q-129 - 371q-128 - 486q-127 - 624q-126 - 212q-125 + 307q-124 + 647q-123 + 1007q-122 + 625q-121 - 65q-120 - 703q-119 - 1437q-118 - 1198q-117 - 397q-116 + 575q-115 + 1804q-114 + 1901q-113 + 1099q-112 - 203q-111 - 2036q-110 - 2633q-109 - 2001q-108 - 452q-107 + 2069q-106 + 3314q-105 + 3008q-104 + 1327q-103 - 1826q-102 - 3827q-101 - 4063q-100 - 2404q-99 + 1379q-98 + 4195q-97 + 5005q-96 + 3488q-95 - 722q-94 - 4279q-93 - 5824q-92 - 4645q-91 + 4q-90 + 4289q-89 + 6445q-88 + 5551q-87 + 750q-86 - 4039q-85 - 6886q-84 - 6434q-83 - 1446q-82 + 3863q-81 + 7159q-80 + 7006q-79 + 2025q-78 - 3535q-77 - 7290q-76 - 7516q-75 - 2509q-74 + 3317q-73 + 7355q-72 + 7798q-71 + 2859q-70 - 3063q-69 - 7327q-68 - 8004q-67 - 3153q-66 + 2847q-65 + 7273q-64 + 8135q-63 + 3361q-62 - 2653q-61 - 7149q-60 - 8156q-59 - 3572q-58 + 2371q-57 + 6990q-56 + 8190q-55 + 3761q-54 - 2117q-53 - 6719q-52 - 8069q-51 - 3984q-50 + 1679q-49 + 6348q-48 + 7969q-47 + 4202q-46 - 1243q-45 - 5818q-44 - 7646q-43 - 4418q-42 + 589q-41 + 5133q-40 + 7291q-39 + 4580q-38 + 20q-37 - 4276q-36 - 6631q-35 - 4660q-34 - 782q-33 + 3301q-32 + 5924q-31 + 4564q-30 + 1351q-29 - 2225q-28 - 4906q-27 - 4306q-26 - 1938q-25 + 1202q-24 + 3919q-23 + 3813q-22 + 2175q-21 - 270q-20 - 2750q-19 - 3176q-18 - 2303q-17 - 448q-16 + 1790q-15 + 2424q-14 + 2070q-13 + 899q-12 - 875q-11 - 1642q-10 - 1766q-9 - 1101q-8 + 282q-7 + 971q-6 + 1282q-5 + 1047q-4 + 140q-3 - 427q-2 - 850q-1 - 879 - 286q + 81q2 + 453q3 + 630q4 + 317q5 + 102q6 - 203q7 - 390q8 - 230q9 - 167q10 + 25q11 + 224q12 + 162q13 + 134q14 + 21q15 - 97q16 - 55q17 - 108q18 - 60q19 + 46q20 + 34q21 + 57q22 + 23q23 - 14q24 + 15q25 - 27q26 - 35q27 + 4q28 + q29 + 15q30 + 3q31 - 9q32 + 17q33 - q34 - 10q35 - 2q37 + 5q38 - q39 - 6q40 + 5q41 + 2q42 - 2q43 - q45 + 2q46 - 2q48 + q49 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[8, 11]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], > X[9, 16, 10, 1], X[15, 6, 16, 7], X[7, 14, 8, 15], X[13, 8, 14, 9]] |
In[3]:= | GaussCode[Knot[8, 11]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 6, -7, 8, -5, 3, -4, 2, -8, 7, -6, 5] |
In[4]:= | DTCode[Knot[8, 11]] |
Out[4]= | DTCode[4, 10, 12, 14, 16, 2, 8, 6] |
In[5]:= | br = BR[Knot[8, 11]] |
Out[5]= | BR[4, {-1, -1, -2, 1, -2, -2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[8, 11]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[8, 11]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[8, 11]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 2, {4, 5}, 1} |
In[10]:= | alex = Alexander[Knot[8, 11]][t] |
Out[10]= | 2 7 2 -9 - -- + - + 7 t - 2 t 2 t t |
In[11]:= | Conway[Knot[8, 11]][z] |
Out[11]= | 2 4 1 - z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 11], Knot[10, 147], Knot[11, NonAlternating, 122]} |
In[13]:= | {KnotDet[Knot[8, 11]], KnotSignature[Knot[8, 11]]} |
Out[13]= | {27, -2} |
In[14]:= | Jones[Knot[8, 11]][q] |
Out[14]= | -7 2 3 5 5 4 4 -2 + q - -- + -- - -- + -- - -- + - + q 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 11]} |
In[16]:= | A2Invariant[Knot[8, 11]][q] |
Out[16]= | -22 -16 2 -12 -10 2 2 4 q + q - --- - q - q + -- + -- + q 14 6 2 q q q |
In[17]:= | HOMFLYPT[Knot[8, 11]][a, z] |
Out[17]= | 2 4 6 2 2 2 4 2 6 2 2 4 4 4 1 + a - 2 a + a + z - a z - 2 a z + a z - a z - a z |
In[18]:= | Kauffman[Knot[8, 11]][a, z] |
Out[18]= | 2 4 6 3 5 7 2 4 2 6 2 1 - a - 2 a - a + a z + 3 a z + 2 a z - 2 z + 6 a z + 2 a z - 8 2 3 3 3 5 3 7 3 4 2 4 4 4 > 2 a z - 3 a z - 2 a z - 3 a z - 4 a z + z - 2 a z - 7 a z - 6 4 8 4 5 3 5 5 5 7 5 2 6 4 6 > 3 a z + a z + 2 a z + a z + a z + 2 a z + 2 a z + 4 a z + 6 6 3 7 5 7 > 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[8, 11]], Vassiliev[3][Knot[8, 11]]} |
Out[19]= | {-1, 2} |
In[20]:= | Kh[Knot[8, 11]][q, t] |
Out[20]= | 2 3 1 1 1 2 1 3 2 2 -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q q t q t q t q t q t q t q t q t 3 2 2 t 3 2 > ----- + ---- + ---- + - + q t + q t 5 2 5 3 q q t q t q t |
In[21]:= | ColouredJones[Knot[8, 11], 2][q] |
Out[21]= | -20 2 5 7 2 14 12 7 25 16 13 29 -7 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - -- + -- - 19 17 16 15 14 13 12 11 10 9 8 q q q q q q q q q q q 15 14 25 9 12 16 3 3 4 > -- - -- + -- - -- - -- + -- - - + 6 q - 2 q + q 7 6 5 4 3 2 q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 811 |
|