© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 76Visit 76's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X5,12,6,13 X9,1,10,14 X13,11,14,10 X11,6,12,7 X7283 |
Gauss Code: | {-1, 7, -2, 1, -3, 6, -7, 2, -4, 5, -6, 3, -5, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 8 12 2 14 6 10 |
Minimum Braid Representative:
Length is 7, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-2 + 5t-1 - 7 + 5t - t2 |
Conway Polynomial: | 1 + z2 - z4 |
Other knots with the same Alexander/Conway Polynomial: | {10133, ...} |
Determinant and Signature: | {19, -2} |
Jones Polynomial: | - q-6 + 2q-5 - 3q-4 + 4q-3 - 3q-2 + 3q-1 - 2 + q |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-20 - q-18 + q-16 + q-12 + q-10 + q-6 - q-4 + q-2 + q4 |
HOMFLY-PT Polynomial: | 1 + z2 - a2 - 2a2z2 - a2z4 + 2a4 + 2a4z2 - a6 |
Kauffman Polynomial: | 1 - 2z2 + z4 + az - 4az3 + 2az5 + a2 - 4a2z2 + a2z4 + a2z6 + 2a3z - 6a3z3 + 4a3z5 + 2a4 - 4a4z2 + 2a4z4 + a4z6 - a5z3 + 2a5z5 + a6 - 2a6z2 + 2a6z4 - a7z + a7z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 76. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-17 - 2q-16 + 5q-14 - 7q-13 - q-12 + 12q-11 - 12q-10 - 3q-9 + 17q-8 - 13q-7 - 4q-6 + 16q-5 - 10q-4 - 5q-3 + 12q-2 - 5q-1 - 4 + 6q - q2 - 2q3 + q4 |
3 | - q-33 + 2q-32 - 2q-30 - 2q-29 + 6q-28 + 3q-27 - 10q-26 - 6q-25 + 15q-24 + 10q-23 - 20q-22 - 16q-21 + 25q-20 + 22q-19 - 29q-18 - 25q-17 + 28q-16 + 31q-15 - 31q-14 - 30q-13 + 26q-12 + 33q-11 - 26q-10 - 29q-9 + 19q-8 + 30q-7 - 15q-6 - 26q-5 + 9q-4 + 24q-3 - 5q-2 - 18q-1 + 14q + 2q2 - 9q3 - 3q4 + 5q5 + 2q6 - q7 - 2q8 + q9 |
4 | q-54 - 2q-53 + 2q-51 - q-50 + 3q-49 - 8q-48 + q-47 + 9q-46 - q-45 + 6q-44 - 25q-43 - q-42 + 25q-41 + 7q-40 + 12q-39 - 56q-38 - 13q-37 + 44q-36 + 28q-35 + 29q-34 - 93q-33 - 36q-32 + 57q-31 + 51q-30 + 52q-29 - 119q-28 - 57q-27 + 57q-26 + 64q-25 + 72q-24 - 127q-23 - 69q-22 + 50q-21 + 66q-20 + 80q-19 - 118q-18 - 69q-17 + 36q-16 + 58q-15 + 83q-14 - 96q-13 - 62q-12 + 16q-11 + 43q-10 + 81q-9 - 64q-8 - 50q-7 - 6q-6 + 23q-5 + 71q-4 - 31q-3 - 32q-2 - 18q-1 + 3 + 49q - 6q2 - 12q3 - 17q4 - 8q5 + 24q6 + 2q7 - 7q9 - 7q10 + 6q11 + q12 + 2q13 - q14 - 2q15 + q16 |
5 | - q-80 + 2q-79 - 2q-77 + q-76 - q-74 + 4q-73 - 8q-71 - q-70 + 4q-69 + 6q-68 + 10q-67 - 4q-66 - 21q-65 - 16q-64 + 8q-63 + 32q-62 + 32q-61 - 4q-60 - 53q-59 - 56q-58 - 3q-57 + 73q-56 + 90q-55 + 17q-54 - 91q-53 - 129q-52 - 41q-51 + 105q-50 + 170q-49 + 71q-48 - 115q-47 - 206q-46 - 103q-45 + 118q-44 + 234q-43 + 132q-42 - 107q-41 - 262q-40 - 157q-39 + 108q-38 + 265q-37 + 174q-36 - 85q-35 - 280q-34 - 190q-33 + 89q-32 + 266q-31 + 192q-30 - 62q-29 - 269q-28 - 198q-27 + 64q-26 + 244q-25 + 192q-24 - 35q-23 - 233q-22 - 193q-21 + 29q-20 + 201q-19 + 183q-18 + 3q-17 - 179q-16 - 176q-15 - 17q-14 + 139q-13 + 163q-12 + 44q-11 - 107q-10 - 147q-9 - 56q-8 + 68q-7 + 121q-6 + 74q-5 - 37q-4 - 97q-3 - 71q-2 + 7q-1 + 66 + 68q + 13q2 - 41q3 - 53q4 - 25q5 + 19q6 + 39q7 + 23q8 - 2q9 - 22q10 - 22q11 - 4q12 + 13q13 + 11q14 + 5q15 - 9q17 - 5q18 + 2q19 + 2q20 + q21 + 2q22 - q23 - 2q24 + q25 |
6 | q-111 - 2q-110 + 2q-108 - q-107 - 2q-105 + 5q-104 - 5q-103 - q-102 + 10q-101 - 3q-100 - 4q-99 - 10q-98 + 9q-97 - 9q-96 + 4q-95 + 32q-94 - q-93 - 16q-92 - 38q-91 + 4q-90 - 23q-89 + 23q-88 + 92q-87 + 25q-86 - 26q-85 - 104q-84 - 45q-83 - 75q-82 + 47q-81 + 210q-80 + 119q-79 + 3q-78 - 192q-77 - 161q-76 - 214q-75 + 35q-74 + 359q-73 + 294q-72 + 116q-71 - 251q-70 - 304q-69 - 434q-68 - 53q-67 + 476q-66 + 493q-65 + 295q-64 - 240q-63 - 409q-62 - 660q-61 - 190q-60 + 517q-59 + 641q-58 + 464q-57 - 177q-56 - 439q-55 - 820q-54 - 314q-53 + 496q-52 + 707q-51 + 572q-50 - 109q-49 - 416q-48 - 889q-47 - 390q-46 + 448q-45 + 709q-44 + 614q-43 - 56q-42 - 371q-41 - 889q-40 - 420q-39 + 387q-38 + 669q-37 + 609q-36 - 9q-35 - 308q-34 - 840q-33 - 428q-32 + 301q-31 + 592q-30 + 574q-29 + 55q-28 - 211q-27 - 750q-26 - 429q-25 + 176q-24 + 470q-23 + 516q-22 + 136q-21 - 77q-20 - 614q-19 - 416q-18 + 28q-17 + 304q-16 + 419q-15 + 207q-14 + 71q-13 - 429q-12 - 361q-11 - 100q-10 + 124q-9 + 275q-8 + 220q-7 + 183q-6 - 225q-5 - 247q-4 - 155q-3 - 19q-2 + 113q-1 + 158 + 209q - 60q2 - 109q3 - 122q4 - 75q5 - 7q6 + 63q7 + 150q8 + 16q9 - 9q10 - 52q11 - 53q12 - 46q13 - 3q14 + 69q15 + 18q16 + 20q17 - 5q18 - 14q19 - 29q20 - 16q21 + 18q22 + 3q23 + 11q24 + 4q25 + 3q26 - 9q27 - 7q28 + 4q29 - 2q30 + 2q31 + q32 + 2q33 - q34 - 2q35 + q36 |
7 | - q-147 + 2q-146 - 2q-144 + q-143 + 2q-141 - 2q-140 - 4q-139 + 6q-138 - q-137 - 6q-136 + 3q-135 + 2q-134 + 10q-133 - q-132 - 14q-131 + 7q-130 - 9q-129 - 15q-128 + 8q-127 + 10q-126 + 37q-125 + 14q-124 - 26q-123 - 11q-122 - 48q-121 - 49q-120 + 12q-119 + 34q-118 + 110q-117 + 89q-116 - 13q-115 - 48q-114 - 167q-113 - 170q-112 - 41q-111 + 61q-110 + 265q-109 + 296q-108 + 120q-107 - 50q-106 - 366q-105 - 464q-104 - 259q-103 - 9q-102 + 465q-101 + 671q-100 + 465q-99 + 117q-98 - 545q-97 - 892q-96 - 715q-95 - 285q-94 + 571q-93 + 1110q-92 + 994q-91 + 514q-90 - 551q-89 - 1301q-88 - 1277q-87 - 768q-86 + 486q-85 + 1432q-84 + 1536q-83 + 1031q-82 - 374q-81 - 1517q-80 - 1748q-79 - 1278q-78 + 239q-77 + 1561q-76 + 1907q-75 + 1477q-74 - 114q-73 - 1541q-72 - 1998q-71 - 1657q-70 - 21q-69 + 1529q-68 + 2069q-67 + 1748q-66 + 103q-65 - 1459q-64 - 2062q-63 - 1843q-62 - 210q-61 + 1433q-60 + 2076q-59 + 1855q-58 + 242q-57 - 1348q-56 - 2017q-55 - 1889q-54 - 320q-53 + 1310q-52 + 1997q-51 + 1857q-50 + 335q-49 - 1215q-48 - 1903q-47 - 1852q-46 - 411q-45 + 1142q-44 + 1843q-43 + 1802q-42 + 442q-41 - 1014q-40 - 1707q-39 - 1773q-38 - 533q-37 + 882q-36 + 1594q-35 + 1702q-34 + 593q-33 - 698q-32 - 1409q-31 - 1640q-30 - 695q-29 + 515q-28 + 1227q-27 + 1525q-26 + 764q-25 - 293q-24 - 986q-23 - 1410q-22 - 830q-21 + 88q-20 + 752q-19 + 1231q-18 + 846q-17 + 115q-16 - 485q-15 - 1033q-14 - 838q-13 - 270q-12 + 251q-11 + 804q-10 + 753q-9 + 374q-8 - 19q-7 - 568q-6 - 643q-5 - 423q-4 - 133q-3 + 344q-2 + 483q-1 + 402 + 244q - 151q2 - 328q3 - 334q4 - 281q5 + 14q6 + 177q7 + 243q8 + 264q9 + 61q10 - 61q11 - 137q12 - 210q13 - 103q14 - 10q15 + 66q16 + 146q17 + 80q18 + 41q19 + 3q20 - 82q21 - 67q22 - 51q23 - 15q24 + 44q25 + 29q26 + 29q27 + 30q28 - 7q29 - 17q30 - 25q31 - 20q32 + 9q33 + q34 + 4q35 + 13q36 + 4q37 + 2q38 - 6q39 - 7q40 + 2q41 - 2q43 + 2q44 + q45 + 2q46 - q47 - 2q48 + q49 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[7, 6]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[9, 1, 10, 14], > X[13, 11, 14, 10], X[11, 6, 12, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[7, 6]] |
Out[3]= | GaussCode[-1, 7, -2, 1, -3, 6, -7, 2, -4, 5, -6, 3, -5, 4] |
In[4]:= | DTCode[Knot[7, 6]] |
Out[4]= | DTCode[4, 8, 12, 2, 14, 6, 10] |
In[5]:= | br = BR[Knot[7, 6]] |
Out[5]= | BR[4, {-1, -1, 2, -1, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 7} |
In[7]:= | BraidIndex[Knot[7, 6]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[7, 6]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[7, 6]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 2, 4, 1} |
In[10]:= | alex = Alexander[Knot[7, 6]][t] |
Out[10]= | -2 5 2 -7 - t + - + 5 t - t t |
In[11]:= | Conway[Knot[7, 6]][z] |
Out[11]= | 2 4 1 + z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[7, 6], Knot[10, 133]} |
In[13]:= | {KnotDet[Knot[7, 6]], KnotSignature[Knot[7, 6]]} |
Out[13]= | {19, -2} |
In[14]:= | Jones[Knot[7, 6]][q] |
Out[14]= | -6 2 3 4 3 3 -2 - q + -- - -- + -- - -- + - + q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[7, 6]} |
In[16]:= | A2Invariant[Knot[7, 6]][q] |
Out[16]= | -20 -18 -16 -12 -10 -6 -4 -2 4 -q - q + q + q + q + q - q + q + q |
In[17]:= | HOMFLYPT[Knot[7, 6]][a, z] |
Out[17]= | 2 4 6 2 2 2 4 2 2 4 1 - a + 2 a - a + z - 2 a z + 2 a z - a z |
In[18]:= | Kauffman[Knot[7, 6]][a, z] |
Out[18]= | 2 4 6 3 7 2 2 2 4 2 6 2 1 + a + 2 a + a + a z + 2 a z - a z - 2 z - 4 a z - 4 a z - 2 a z - 3 3 3 5 3 7 3 4 2 4 4 4 6 4 > 4 a z - 6 a z - a z + a z + z + a z + 2 a z + 2 a z + 5 3 5 5 5 2 6 4 6 > 2 a z + 4 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[7, 6]], Vassiliev[3][Knot[7, 6]]} |
Out[19]= | {1, -2} |
In[20]:= | Kh[Knot[7, 6]][q, t] |
Out[20]= | 2 2 1 1 1 2 1 2 2 1 -- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 5 q q t q t q t q t q t q t q t q t 2 t 3 2 > ---- + - + q t + q t 3 q q t |
In[21]:= | ColouredJones[Knot[7, 6], 2][q] |
Out[21]= | -17 2 5 7 -12 12 12 3 17 13 4 16 10 -4 + q - --- + --- - --- - q + --- - --- - -- + -- - -- - -- + -- - -- - 16 14 13 11 10 9 8 7 6 5 4 q q q q q q q q q q q 5 12 5 2 3 4 > -- + -- - - + 6 q - q - 2 q + q 3 2 q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 76 |
|