© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 77Visit 77's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X1425 X5,10,6,11 X3948 X9,3,10,2 X11,14,12,1 X7,13,8,12 X13,7,14,6 |
Gauss Code: | {-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -5, 6, -7, 5} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 12 2 14 6 |
Minimum Braid Representative:
Length is 7, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-2 - 5t-1 + 9 - 5t + t2 |
Conway Polynomial: | 1 - z2 + z4 |
Other knots with the same Alexander/Conway Polynomial: | {K11n28, ...} |
Determinant and Signature: | {21, 0} |
Jones Polynomial: | - q-3 + 3q-2 - 3q-1 + 4 - 4q + 3q2 - 2q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-10 + q-8 + q-6 + 2q-2 + q2 - q4 - q6 - q10 + q12 + q14 |
HOMFLY-PT Polynomial: | a-4 - 2a-2 - 2a-2z2 + 2 + 2z2 + z4 - a2z2 |
Kauffman Polynomial: | a-4 - 2a-4z2 + a-4z4 + 2a-3z - 4a-3z3 + 2a-3z5 + 2a-2 - 6a-2z2 + 2a-2z4 + a-2z6 + 3a-1z - 8a-1z3 + 5a-1z5 + 2 - 7z2 + 4z4 + z6 + az - 3az3 + 3az5 - 3a2z2 + 3a2z4 + a3z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-1, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 77. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-9 - 3q-8 + 8q-6 - 9q-5 - 2q-4 + 16q-3 - 14q-2 - 5q-1 + 21 - 15q - 7q2 + 20q3 - 11q4 - 7q5 + 14q6 - 5q7 - 5q8 + 6q9 - q10 - 2q11 + q12 |
3 | - q-18 + 3q-17 - 5q-15 - 3q-14 + 9q-13 + 9q-12 - 17q-11 - 12q-10 + 20q-9 + 23q-8 - 28q-7 - 28q-6 + 28q-5 + 40q-4 - 34q-3 - 43q-2 + 32q-1 + 49 - 32q - 50q2 + 28q3 + 50q4 - 23q5 - 48q6 + 19q7 + 43q8 - 11q9 - 38q10 + 5q11 + 31q12 - q13 - 23q14 - 3q15 + 16q16 + 4q17 - 9q18 - 4q19 + 5q20 + 2q21 - q22 - 2q23 + q24 |
4 | q-30 - 3q-29 + 5q-27 + 3q-25 - 16q-24 - 2q-23 + 17q-22 + 6q-21 + 15q-20 - 47q-19 - 17q-18 + 36q-17 + 28q-16 + 40q-15 - 90q-14 - 50q-13 + 47q-12 + 61q-11 + 82q-10 - 127q-9 - 93q-8 + 44q-7 + 90q-6 + 125q-5 - 147q-4 - 125q-3 + 31q-2 + 103q-1 + 156 - 149q - 136q2 + 16q3 + 98q4 + 167q5 - 131q6 - 129q7 - 4q8 + 79q9 + 162q10 - 98q11 - 109q12 - 24q13 + 50q14 + 141q15 - 54q16 - 76q17 - 39q18 + 17q19 + 106q20 - 16q21 - 39q22 - 38q23 - 7q24 + 62q25 + 3q26 - 10q27 - 23q28 - 14q29 + 25q30 + 4q31 + 2q32 - 7q33 - 8q34 + 6q35 + q36 + 2q37 - q38 - 2q39 + q40 |
5 | - q-45 + 3q-44 - 5q-42 + 4q-39 + 9q-38 + 2q-37 - 17q-36 - 15q-35 + 21q-33 + 32q-32 + 9q-31 - 33q-30 - 63q-29 - 24q-28 + 56q-27 + 91q-26 + 50q-25 - 55q-24 - 149q-23 - 95q-22 + 76q-21 + 190q-20 + 141q-19 - 50q-18 - 253q-17 - 211q-16 + 55q-15 + 283q-14 + 269q-13 - 11q-12 - 330q-11 - 335q-10 - q-9 + 341q-8 + 378q-7 + 49q-6 - 363q-5 - 420q-4 - 62q-3 + 354q-2 + 441q-1 + 98 - 353q - 455q2 - 111q3 + 335q4 + 452q5 + 132q6 - 311q7 - 446q8 - 147q9 + 283q10 + 427q11 + 159q12 - 242q13 - 400q14 - 180q15 + 202q16 + 368q17 + 187q18 - 149q19 - 324q20 - 198q21 + 96q22 + 278q23 + 197q24 - 45q25 - 221q26 - 189q27 + 162q29 + 173q30 + 33q31 - 110q32 - 141q33 - 55q34 + 61q35 + 109q36 + 60q37 - 26q38 - 72q39 - 56q40 + 3q41 + 45q42 + 39q43 + 9q44 - 19q45 - 29q46 - 11q47 + 11q48 + 12q49 + 7q50 + 2q51 - 9q52 - 6q53 + 2q54 + 2q55 + q56 + 2q57 - q58 - 2q59 + q60 |
6 | q-63 - 3q-62 + 5q-60 - 7q-57 + 3q-56 - 9q-55 - 2q-54 + 26q-53 + 6q-52 - 27q-50 - 6q-49 - 35q-48 - q-47 + 79q-46 + 44q-45 + 14q-44 - 74q-43 - 44q-42 - 124q-41 - 22q-40 + 183q-39 + 161q-38 + 100q-37 - 122q-36 - 145q-35 - 331q-34 - 127q-33 + 299q-32 + 383q-31 + 321q-30 - 90q-29 - 264q-28 - 667q-27 - 373q-26 + 335q-25 + 640q-24 + 669q-23 + 76q-22 - 312q-21 - 1034q-20 - 724q-19 + 241q-18 + 825q-17 + 1031q-16 + 332q-15 - 249q-14 - 1311q-13 - 1058q-12 + 66q-11 + 890q-10 + 1288q-9 + 572q-8 - 118q-7 - 1449q-6 - 1279q-5 - 102q-4 + 862q-3 + 1400q-2 + 729q-1 + 18 - 1467q - 1371q2 - 225q3 + 787q4 + 1395q5 + 804q6 + 133q7 - 1398q8 - 1362q9 - 315q10 + 674q11 + 1305q12 + 828q13 + 243q14 - 1245q15 - 1281q16 - 404q17 + 507q18 + 1137q19 + 823q20 + 373q21 - 1000q22 - 1130q23 - 498q24 + 275q25 + 886q26 + 775q27 + 511q28 - 672q29 - 899q30 - 556q31 + 16q32 + 561q33 + 650q34 + 595q35 - 318q36 - 591q37 - 517q38 - 184q39 + 224q40 + 435q41 + 560q42 - 38q43 - 271q44 - 364q45 - 249q46 - 23q47 + 192q48 + 398q49 + 90q50 - 41q51 - 170q52 - 179q53 - 116q54 + 22q55 + 200q56 + 79q57 + 47q58 - 36q59 - 70q60 - 88q61 - 35q62 + 67q63 + 27q64 + 37q65 + 8q66 - 8q67 - 35q68 - 24q69 + 15q70 + q71 + 12q72 + 6q73 + 5q74 - 9q75 - 8q76 + 4q77 - 2q78 + 2q79 + q80 + 2q81 - q82 - 2q83 + q84 |
7 | - q-84 + 3q-83 - 5q-81 + 7q-78 - 3q-76 + 9q-75 - 7q-74 - 17q-73 - 6q-72 + 27q-70 + 23q-69 - 2q-68 + 16q-67 - 34q-66 - 60q-65 - 34q-64 - 17q-63 + 84q-62 + 108q-61 + 57q-60 + 41q-59 - 108q-58 - 195q-57 - 149q-56 - 103q-55 + 160q-54 + 334q-53 + 287q-52 + 201q-51 - 196q-50 - 478q-49 - 495q-48 - 414q-47 + 161q-46 + 686q-45 + 818q-44 + 682q-43 - 98q-42 - 838q-41 - 1131q-40 - 1116q-39 - 138q-38 + 988q-37 + 1567q-36 + 1587q-35 + 393q-34 - 1008q-33 - 1892q-32 - 2162q-31 - 853q-30 + 983q-29 + 2262q-28 + 2701q-27 + 1279q-26 - 819q-25 - 2449q-24 - 3250q-23 - 1817q-22 + 618q-21 + 2636q-20 + 3675q-19 + 2251q-18 - 333q-17 - 2651q-16 - 4040q-15 - 2708q-14 + 81q-13 + 2666q-12 + 4263q-11 + 3011q-10 + 194q-9 - 2556q-8 - 4431q-7 - 3297q-6 - 398q-5 + 2486q-4 + 4481q-3 + 3437q-2 + 596q-1 - 2339 - 4497q - 3566q2 - 730q3 + 2233q4 + 4443q5 + 3599q6 + 849q7 - 2082q8 - 4354q9 - 3618q10 - 955q11 + 1934q12 + 4235q13 + 3592q14 + 1044q15 - 1755q16 - 4050q17 - 3540q18 - 1168q19 + 1535q20 + 3840q21 + 3479q22 + 1274q23 - 1278q24 - 3554q25 - 3361q26 - 1422q27 + 954q28 + 3224q29 + 3231q30 + 1557q31 - 617q32 - 2818q33 - 3024q34 - 1684q35 + 228q36 + 2352q37 + 2782q38 + 1772q39 + 147q40 - 1857q41 - 2451q42 - 1789q43 - 498q44 + 1329q45 + 2061q46 + 1739q47 + 776q48 - 821q49 - 1633q50 - 1583q51 - 956q52 + 369q53 + 1174q54 + 1344q55 + 1036q56 - 4q57 - 750q58 - 1057q59 - 984q60 - 239q61 + 372q62 + 741q63 + 854q64 + 368q65 - 101q66 - 446q67 - 661q68 - 391q69 - 77q70 + 217q71 + 461q72 + 325q73 + 154q74 - 44q75 - 275q76 - 250q77 - 165q78 - 30q79 + 149q80 + 140q81 + 123q82 + 76q83 - 53q84 - 81q85 - 93q86 - 58q87 + 25q88 + 25q89 + 37q90 + 49q91 + 8q92 - 9q93 - 28q94 - 27q95 + 5q96 - 2q97 + 2q98 + 14q99 + 6q100 + 4q101 - 6q102 - 8q103 + 2q104 - 2q106 + 2q107 + q108 + 2q109 - q110 - 2q111 + q112 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[7, 7]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], > X[11, 14, 12, 1], X[7, 13, 8, 12], X[13, 7, 14, 6]] |
In[3]:= | GaussCode[Knot[7, 7]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -5, 6, -7, 5] |
In[4]:= | DTCode[Knot[7, 7]] |
Out[4]= | DTCode[4, 8, 10, 12, 2, 14, 6] |
In[5]:= | br = BR[Knot[7, 7]] |
Out[5]= | BR[4, {1, -2, 1, -2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 7} |
In[7]:= | BraidIndex[Knot[7, 7]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[7, 7]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[7, 7]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 2, 4, 1} |
In[10]:= | alex = Alexander[Knot[7, 7]][t] |
Out[10]= | -2 5 2 9 + t - - - 5 t + t t |
In[11]:= | Conway[Knot[7, 7]][z] |
Out[11]= | 2 4 1 - z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[7, 7], Knot[11, NonAlternating, 28]} |
In[13]:= | {KnotDet[Knot[7, 7]], KnotSignature[Knot[7, 7]]} |
Out[13]= | {21, 0} |
In[14]:= | Jones[Knot[7, 7]][q] |
Out[14]= | -3 3 3 2 3 4 4 - q + -- - - - 4 q + 3 q - 2 q + q 2 q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[7, 7]} |
In[16]:= | A2Invariant[Knot[7, 7]][q] |
Out[16]= | -10 -8 -6 2 2 4 6 10 12 14 -q + q + q + -- + q - q - q - q + q + q 2 q |
In[17]:= | HOMFLYPT[Knot[7, 7]][a, z] |
Out[17]= | 2 -4 2 2 2 z 2 2 4 2 + a - -- + 2 z - ---- - a z + z 2 2 a a |
In[18]:= | Kauffman[Knot[7, 7]][a, z] |
Out[18]= | 2 2 3 3 -4 2 2 z 3 z 2 2 z 6 z 2 2 4 z 8 z 2 + a + -- + --- + --- + a z - 7 z - ---- - ---- - 3 a z - ---- - ---- - 2 3 a 4 2 3 a a a a a a 4 4 5 5 6 3 3 3 4 z 2 z 2 4 2 z 5 z 5 6 z > 3 a z + a z + 4 z + -- + ---- + 3 a z + ---- + ---- + 3 a z + z + -- 4 2 3 a 2 a a a a |
In[19]:= | {Vassiliev[2][Knot[7, 7]], Vassiliev[3][Knot[7, 7]]} |
Out[19]= | {-1, -1} |
In[20]:= | Kh[Knot[7, 7]][q, t] |
Out[20]= | 3 1 2 1 1 2 3 3 2 - + 2 q + ----- + ----- + ----- + ---- + --- + 2 q t + 2 q t + q t + q 7 3 5 2 3 2 3 q t q t q t q t q t 5 2 5 3 7 3 9 4 > 2 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[7, 7], 2][q] |
Out[21]= | -9 3 8 9 2 16 14 5 2 3 4 21 + q - -- + -- - -- - -- + -- - -- - - - 15 q - 7 q + 20 q - 11 q - 8 6 5 4 3 2 q q q q q q q 5 6 7 8 9 10 11 12 > 7 q + 14 q - 5 q - 5 q + 6 q - q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 77 |
|