© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 75Visit 75's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X5,12,6,13 X7,14,8,1 X13,6,14,7 X11,8,12,9 X9,2,10,3 |
Gauss Code: | {-1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 10 12 14 2 8 6 |
Minimum Braid Representative:
Length is 8, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-2 - 4t-1 + 5 - 4t + 2t2 |
Conway Polynomial: | 1 + 4z2 + 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {10130, ...} |
Determinant and Signature: | {17, -4} |
Jones Polynomial: | - q-9 + 2q-8 - 3q-7 + 3q-6 - 3q-5 + 3q-4 - q-3 + q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-28 - q-22 - q-18 + q-16 + q-14 + q-12 + 2q-10 + q-6 |
HOMFLY-PT Polynomial: | 2a4 + 3a4z2 + a4z4 + 2a6z2 + a6z4 - a8 - a8z2 |
Kauffman Polynomial: | 2a4 - 3a4z2 + a4z4 - a5z - a5z3 + a5z5 - a6z4 + a6z6 + a7z - 4a7z3 + 3a7z5 - a8 + a8z2 + a8z6 + a9z - 2a9z3 + 2a9z5 - 2a10z2 + 2a10z4 - a11z + a11z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {4, -8} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 75. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-25 - 2q-24 + 5q-22 - 6q-21 - 2q-20 + 11q-19 - 9q-18 - 4q-17 + 14q-16 - 10q-15 - 5q-14 + 13q-13 - 7q-12 - 5q-11 + 9q-10 - 3q-9 - 3q-8 + 4q-7 - q-5 + q-4 |
3 | - q-48 + 2q-47 - 2q-45 - 2q-44 + 5q-43 + 4q-42 - 8q-41 - 8q-40 + 11q-39 + 12q-38 - 12q-37 - 18q-36 + 15q-35 + 22q-34 - 15q-33 - 26q-32 + 16q-31 + 27q-30 - 15q-29 - 28q-28 + 13q-27 + 28q-26 - 12q-25 - 25q-24 + 7q-23 + 24q-22 - 6q-21 - 18q-20 - q-19 + 18q-18 - q-17 - 10q-16 - 4q-15 + 9q-14 + 2q-13 - 3q-12 - 3q-11 + 3q-10 + q-9 - q-7 + q-6 |
4 | q-78 - 2q-77 + 2q-75 - q-74 + 3q-73 - 7q-72 + 7q-70 + 9q-68 - 21q-67 - 7q-66 + 15q-65 + 9q-64 + 23q-63 - 40q-62 - 22q-61 + 17q-60 + 22q-59 + 47q-58 - 56q-57 - 42q-56 + 13q-55 + 33q-54 + 69q-53 - 64q-52 - 55q-51 + 7q-50 + 37q-49 + 82q-48 - 64q-47 - 59q-46 + 2q-45 + 34q-44 + 84q-43 - 57q-42 - 54q-41 - 6q-40 + 26q-39 + 79q-38 - 43q-37 - 43q-36 - 13q-35 + 13q-34 + 66q-33 - 22q-32 - 28q-31 - 19q-30 - q-29 + 48q-28 - 5q-27 - 12q-26 - 17q-25 - 9q-24 + 26q-23 + 2q-22 - 9q-20 - 9q-19 + 10q-18 + q-17 + 3q-16 - 2q-15 - 4q-14 + 3q-13 + q-11 - q-9 + q-8 |
5 | - q-115 + 2q-114 - 2q-112 + q-111 - q-109 + 3q-108 + q-107 - 6q-106 - 2q-105 + 2q-104 + 3q-103 + 10q-102 + 3q-101 - 12q-100 - 18q-99 - 7q-98 + 15q-97 + 31q-96 + 20q-95 - 19q-94 - 47q-93 - 37q-92 + 16q-91 + 67q-90 + 58q-89 - 11q-88 - 81q-87 - 83q-86 - 3q-85 + 97q-84 + 110q-83 + 11q-82 - 103q-81 - 130q-80 - 30q-79 + 112q-78 + 148q-77 + 38q-76 - 111q-75 - 159q-74 - 51q-73 + 111q-72 + 167q-71 + 56q-70 - 107q-69 - 168q-68 - 62q-67 + 102q-66 + 166q-65 + 67q-64 - 95q-63 - 162q-62 - 66q-61 + 83q-60 + 152q-59 + 74q-58 - 74q-57 - 142q-56 - 70q-55 + 53q-54 + 125q-53 + 82q-52 - 44q-51 - 110q-50 - 69q-49 + 13q-48 + 87q-47 + 82q-46 - 7q-45 - 69q-44 - 61q-43 - 19q-42 + 40q-41 + 69q-40 + 18q-39 - 27q-38 - 40q-37 - 31q-36 + 5q-35 + 39q-34 + 22q-33 + q-32 - 15q-31 - 23q-30 - 10q-29 + 14q-28 + 10q-27 + 8q-26 - 9q-24 - 8q-23 + 4q-22 + q-21 + 3q-20 + 3q-19 - 2q-18 - 3q-17 + 2q-16 + q-13 - q-11 + q-10 |
6 | q-159 - 2q-158 + 2q-156 - q-155 - 2q-153 + 5q-152 - 4q-151 - 2q-150 + 8q-149 - 2q-148 - 2q-147 - 8q-146 + 8q-145 - 10q-144 - 2q-143 + 24q-142 + 6q-141 - q-140 - 24q-139 + 3q-138 - 37q-137 - 10q-136 + 57q-135 + 40q-134 + 26q-133 - 38q-132 - 19q-131 - 105q-130 - 51q-129 + 86q-128 + 105q-127 + 100q-126 - 16q-125 - 35q-124 - 215q-123 - 142q-122 + 78q-121 + 172q-120 + 212q-119 + 53q-118 - 16q-117 - 325q-116 - 263q-115 + 27q-114 + 208q-113 + 318q-112 + 143q-111 + 34q-110 - 399q-109 - 365q-108 - 39q-107 + 210q-106 + 383q-105 + 213q-104 + 90q-103 - 429q-102 - 422q-101 - 89q-100 + 194q-99 + 405q-98 + 249q-97 + 131q-96 - 428q-95 - 438q-94 - 117q-93 + 174q-92 + 397q-91 + 258q-90 + 155q-89 - 407q-88 - 425q-87 - 131q-86 + 148q-85 + 365q-84 + 256q-83 + 173q-82 - 363q-81 - 390q-80 - 144q-79 + 107q-78 + 307q-77 + 244q-76 + 196q-75 - 287q-74 - 331q-73 - 162q-72 + 44q-71 + 223q-70 + 217q-69 + 220q-68 - 181q-67 - 246q-66 - 168q-65 - 27q-64 + 118q-63 + 165q-62 + 224q-61 - 70q-60 - 140q-59 - 143q-58 - 75q-57 + 17q-56 + 89q-55 + 188q-54 + 7q-53 - 41q-52 - 84q-51 - 76q-50 - 44q-49 + 17q-48 + 116q-47 + 30q-46 + 17q-45 - 23q-44 - 40q-43 - 52q-42 - 20q-41 + 48q-40 + 14q-39 + 26q-38 + 7q-37 - 5q-36 - 29q-35 - 21q-34 + 14q-33 - 2q-32 + 11q-31 + 8q-30 + 6q-29 - 9q-28 - 9q-27 + 5q-26 - 4q-25 + 2q-24 + 2q-23 + 4q-22 - 2q-21 - 3q-20 + 3q-19 - q-18 + q-15 - q-13 + q-12 |
7 | - q-210 + 2q-209 - 2q-207 + q-206 + 2q-204 - 2q-203 - 4q-202 + 5q-201 - 4q-199 + 2q-198 + 8q-196 + q-195 - 12q-194 + 7q-193 - 4q-192 - 12q-191 - 3q-189 + 26q-188 + 18q-187 - 7q-186 + 11q-185 - 22q-184 - 43q-183 - 22q-182 - 25q-181 + 45q-180 + 74q-179 + 44q-178 + 57q-177 - 41q-176 - 108q-175 - 105q-174 - 115q-173 + 30q-172 + 149q-171 + 173q-170 + 200q-169 + 13q-168 - 177q-167 - 252q-166 - 317q-165 - 89q-164 + 181q-163 + 336q-162 + 457q-161 + 193q-160 - 162q-159 - 406q-158 - 597q-157 - 323q-156 + 109q-155 + 450q-154 + 741q-153 + 472q-152 - 44q-151 - 480q-150 - 859q-149 - 597q-148 - 49q-147 + 471q-146 + 959q-145 + 731q-144 + 128q-143 - 466q-142 - 1019q-141 - 818q-140 - 211q-139 + 428q-138 + 1064q-137 + 900q-136 + 270q-135 - 402q-134 - 1081q-133 - 940q-132 - 321q-131 + 365q-130 + 1087q-129 + 970q-128 + 355q-127 - 341q-126 - 1079q-125 - 979q-124 - 376q-123 + 313q-122 + 1063q-121 + 979q-120 + 390q-119 - 289q-118 - 1039q-117 - 972q-116 - 398q-115 + 264q-114 + 1007q-113 + 950q-112 + 408q-111 - 228q-110 - 962q-109 - 934q-108 - 415q-107 + 193q-106 + 899q-105 + 893q-104 + 433q-103 - 127q-102 - 830q-101 - 864q-100 - 439q-99 + 72q-98 + 727q-97 + 791q-96 + 471q-95 + 23q-94 - 628q-93 - 744q-92 - 463q-91 - 84q-90 + 482q-89 + 633q-88 + 483q-87 + 193q-86 - 370q-85 - 558q-84 - 441q-83 - 232q-82 + 214q-81 + 409q-80 + 422q-79 + 307q-78 - 105q-77 - 320q-76 - 341q-75 - 292q-74 - 10q-73 + 168q-72 + 270q-71 + 311q-70 + 71q-69 - 94q-68 - 175q-67 - 239q-66 - 115q-65 - 13q-64 + 97q-63 + 205q-62 + 113q-61 + 38q-60 - 22q-59 - 120q-58 - 102q-57 - 75q-56 - 17q-55 + 82q-54 + 61q-53 + 57q-52 + 45q-51 - 23q-50 - 41q-49 - 53q-48 - 41q-47 + 15q-46 + 7q-45 + 22q-44 + 38q-43 + 10q-42 - 2q-41 - 19q-40 - 22q-39 + 3q-38 - 8q-37 - q-36 + 13q-35 + 8q-34 + 5q-33 - 4q-32 - 8q-31 + 5q-30 - 4q-29 - 3q-28 + 2q-27 + 2q-26 + 3q-25 - q-24 - 3q-23 + 3q-22 - q-20 + q-17 - q-15 + q-14 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[7, 5]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 12, 6, 13], X[7, 14, 8, 1], > X[13, 6, 14, 7], X[11, 8, 12, 9], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[7, 5]] |
Out[3]= | GaussCode[-1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4] |
In[4]:= | DTCode[Knot[7, 5]] |
Out[4]= | DTCode[4, 10, 12, 14, 2, 8, 6] |
In[5]:= | br = BR[Knot[7, 5]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -2, 1, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[7, 5]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[7, 5]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[7, 5]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, 4, 1} |
In[10]:= | alex = Alexander[Knot[7, 5]][t] |
Out[10]= | 2 4 2 5 + -- - - - 4 t + 2 t 2 t t |
In[11]:= | Conway[Knot[7, 5]][z] |
Out[11]= | 2 4 1 + 4 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[7, 5], Knot[10, 130]} |
In[13]:= | {KnotDet[Knot[7, 5]], KnotSignature[Knot[7, 5]]} |
Out[13]= | {17, -4} |
In[14]:= | Jones[Knot[7, 5]][q] |
Out[14]= | -9 2 3 3 3 3 -3 -2 -q + -- - -- + -- - -- + -- - q + q 8 7 6 5 4 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[7, 5]} |
In[16]:= | A2Invariant[Knot[7, 5]][q] |
Out[16]= | -28 -22 -18 -16 -14 -12 2 -6 -q - q - q + q + q + q + --- + q 10 q |
In[17]:= | HOMFLYPT[Knot[7, 5]][a, z] |
Out[17]= | 4 8 4 2 6 2 8 2 4 4 6 4 2 a - a + 3 a z + 2 a z - a z + a z + a z |
In[18]:= | Kauffman[Knot[7, 5]][a, z] |
Out[18]= | 4 8 5 7 9 11 4 2 8 2 10 2 5 3 2 a - a - a z + a z + a z - a z - 3 a z + a z - 2 a z - a z - 7 3 9 3 11 3 4 4 6 4 10 4 5 5 7 5 > 4 a z - 2 a z + a z + a z - a z + 2 a z + a z + 3 a z + 9 5 6 6 8 6 > 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[7, 5]], Vassiliev[3][Knot[7, 5]]} |
Out[19]= | {4, -8} |
In[20]:= | Kh[Knot[7, 5]][q, t] |
Out[20]= | -5 -3 1 1 1 2 1 1 2 q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 19 7 17 6 15 6 15 5 13 5 13 4 11 4 q t q t q t q t q t q t q t 2 1 1 2 1 > ------ + ----- + ----- + ----- + ---- 11 3 9 3 9 2 7 2 5 q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[7, 5], 2][q] |
Out[21]= | -25 2 5 6 2 11 9 4 14 10 5 13 7 q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - 24 22 21 20 19 18 17 16 15 14 13 12 q q q q q q q q q q q q 5 9 3 3 4 -5 -4 > --- + --- - -- - -- + -- - q + q 11 10 9 8 7 q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 75 |
|