© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.98
1098
10.100
10100
    10.99
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 1099   

Visit 1099's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 1099's page at Knotilus!

Acknowledgement

10.99
KnotPlot

PD Presentation: X6271 X10,4,11,3 X16,11,17,12 X14,7,15,8 X8,15,9,16 X20,13,1,14 X12,19,13,20 X18,6,19,5 X2,10,3,9 X4,18,5,17

Gauss Code: {1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 6, -4, 5, -3, 10, -8, 7, -6}

DT (Dowker-Thistlethwaite) Code: 6 10 18 14 2 16 20 8 4 12

Minimum Braid Representative:


Length is 10, width is 3
Braid index is 3

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
FullyAmphicheiral 2 4 3 / NotAvailable 2

Alexander Polynomial: t-4 - 4t-3 + 10t-2 - 16t-1 + 19 - 16t + 10t2 - 4t3 + t4

Conway Polynomial: 1 + 4z2 + 6z4 + 4z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {81, 0}

Jones Polynomial: - q-5 + 3q-4 - 7q-3 + 10q-2 - 12q-1 + 15 - 12q + 10q2 - 7q3 + 3q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-14 + q-12 - 3q-10 - q-6 - q-4 + 6q-2 + 1 + 6q2 - q4 - q6 - 3q10 + q12 - q14

HOMFLY-PT Polynomial: - 4a-2 - 6a-2z2 - 4a-2z4 - a-2z6 + 9 + 16z2 + 14z4 + 6z6 + z8 - 4a2 - 6a2z2 - 4a2z4 - a2z6

Kauffman Polynomial: a-5z - 2a-5z3 + a-5z5 + a-4z2 - 5a-4z4 + 3a-4z6 - 3a-3z + 5a-3z3 - 9a-3z5 + 5a-3z7 + 4a-2 - 8a-2z2 + 9a-2z4 - 9a-2z6 + 5a-2z8 - 10a-1z + 21a-1z3 - 18a-1z5 + 5a-1z7 + 2a-1z9 + 9 - 18z2 + 28z4 - 24z6 + 10z8 - 10az + 21az3 - 18az5 + 5az7 + 2az9 + 4a2 - 8a2z2 + 9a2z4 - 9a2z6 + 5a2z8 - 3a3z + 5a3z3 - 9a3z5 + 5a3z7 + a4z2 - 5a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1099. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11          1
j = 9         2 
j = 7        51 
j = 5       52  
j = 3      75   
j = 1     85    
j = -1    58     
j = -3   57      
j = -5  25       
j = -7 15        
j = -9 2         
j = -111          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-15 - 3q-14 + 2q-13 + 8q-12 - 19q-11 + 5q-10 + 37q-9 - 53q-8 - 7q-7 + 91q-6 - 85q-5 - 40q-4 + 146q-3 - 93q-2 - 75q-1 + 171 - 75q - 93q2 + 146q3 - 40q4 - 85q5 + 91q6 - 7q7 - 53q8 + 37q9 + 5q10 - 19q11 + 8q12 + 2q13 - 3q14 + q15
3 - q-30 + 3q-29 - 2q-28 - 3q-27 + q-26 + 12q-25 - 6q-24 - 27q-23 + 9q-22 + 61q-21 - 9q-20 - 109q-19 - 23q-18 + 190q-17 + 75q-16 - 261q-15 - 185q-14 + 332q-13 + 325q-12 - 364q-11 - 495q-10 + 357q-9 + 667q-8 - 320q-7 - 809q-6 + 233q-5 + 939q-4 - 161q-3 - 987q-2 + 37q-1 + 1043 + 37q - 987q2 - 161q3 + 939q4 + 233q5 - 809q6 - 320q7 + 667q8 + 357q9 - 495q10 - 364q11 + 325q12 + 332q13 - 185q14 - 261q15 + 75q16 + 190q17 - 23q18 - 109q19 - 9q20 + 61q21 + 9q22 - 27q23 - 6q24 + 12q25 + q26 - 3q27 - 2q28 + 3q29 - q30
4 q-50 - 3q-49 + 2q-48 + 3q-47 - 6q-46 + 6q-45 - 11q-44 + 12q-43 + 16q-42 - 35q-41 + 7q-40 - 38q-39 + 66q-38 + 100q-37 - 105q-36 - 76q-35 - 200q-34 + 187q-33 + 446q-32 - 28q-31 - 255q-30 - 838q-29 + 35q-28 + 1106q-27 + 691q-26 - 30q-25 - 2010q-24 - 1043q-23 + 1407q-22 + 2104q-21 + 1385q-20 - 2900q-19 - 3056q-18 + 470q-17 + 3328q-16 + 3884q-15 - 2622q-14 - 4993q-13 - 1560q-12 + 3510q-11 + 6369q-10 - 1322q-9 - 5964q-8 - 3670q-7 + 2745q-6 + 7940q-5 + 224q-4 - 5927q-3 - 5156q-2 + 1581q-1 + 8447 + 1581q - 5156q2 - 5927q3 + 224q4 + 7940q5 + 2745q6 - 3670q7 - 5964q8 - 1322q9 + 6369q10 + 3510q11 - 1560q12 - 4993q13 - 2622q14 + 3884q15 + 3328q16 + 470q17 - 3056q18 - 2900q19 + 1385q20 + 2104q21 + 1407q22 - 1043q23 - 2010q24 - 30q25 + 691q26 + 1106q27 + 35q28 - 838q29 - 255q30 - 28q31 + 446q32 + 187q33 - 200q34 - 76q35 - 105q36 + 100q37 + 66q38 - 38q39 + 7q40 - 35q41 + 16q42 + 12q43 - 11q44 + 6q45 - 6q46 + 3q47 + 2q48 - 3q49 + q50
5 - q-75 + 3q-74 - 2q-73 - 3q-72 + 6q-71 - q-70 - 7q-69 + 5q-68 - q-67 - 6q-66 + 22q-65 + 12q-64 - 33q-63 - 28q-62 - 23q-61 + 12q-60 + 107q-59 + 126q-58 - 26q-57 - 224q-56 - 306q-55 - 131q-54 + 358q-53 + 738q-52 + 521q-51 - 347q-50 - 1339q-49 - 1437q-48 - 86q-47 + 1938q-46 + 2901q-45 + 1464q-44 - 2053q-43 - 4912q-42 - 3962q-41 + 1009q-40 + 6645q-39 + 7854q-38 + 1950q-37 - 7526q-36 - 12408q-35 - 7022q-34 + 6162q-33 + 16808q-32 + 14196q-31 - 2214q-30 - 19755q-29 - 22327q-28 - 4702q-27 + 20249q-26 + 30372q-25 + 13780q-24 - 17854q-23 - 36950q-22 - 23916q-21 + 12741q-20 + 41256q-19 + 33898q-18 - 5831q-17 - 43082q-16 - 42435q-15 - 1995q-14 + 42625q-13 + 49289q-12 + 9458q-11 - 40678q-10 - 53776q-9 - 16350q-8 + 37661q-7 + 56948q-6 + 21839q-5 - 34393q-4 - 58157q-3 - 26722q-2 + 30574q-1 + 58989 + 30574q - 26722q2 - 58157q3 - 34393q4 + 21839q5 + 56948q6 + 37661q7 - 16350q8 - 53776q9 - 40678q10 + 9458q11 + 49289q12 + 42625q13 - 1995q14 - 42435q15 - 43082q16 - 5831q17 + 33898q18 + 41256q19 + 12741q20 - 23916q21 - 36950q22 - 17854q23 + 13780q24 + 30372q25 + 20249q26 - 4702q27 - 22327q28 - 19755q29 - 2214q30 + 14196q31 + 16808q32 + 6162q33 - 7022q34 - 12408q35 - 7526q36 + 1950q37 + 7854q38 + 6645q39 + 1009q40 - 3962q41 - 4912q42 - 2053q43 + 1464q44 + 2901q45 + 1938q46 - 86q47 - 1437q48 - 1339q49 - 347q50 + 521q51 + 738q52 + 358q53 - 131q54 - 306q55 - 224q56 - 26q57 + 126q58 + 107q59 + 12q60 - 23q61 - 28q62 - 33q63 + 12q64 + 22q65 - 6q66 - q67 + 5q68 - 7q69 - q70 + 6q71 - 3q72 - 2q73 + 3q74 - q75
6 q-105 - 3q-104 + 2q-103 + 3q-102 - 6q-101 + q-100 + 2q-99 + 13q-98 - 16q-97 - 9q-96 + 19q-95 - 25q-94 + 4q-93 + 23q-92 + 65q-91 - 37q-90 - 76q-89 + 6q-88 - 111q-87 - 5q-86 + 138q-85 + 355q-84 + 83q-83 - 201q-82 - 230q-81 - 721q-80 - 461q-79 + 222q-78 + 1432q-77 + 1389q-76 + 649q-75 - 284q-74 - 2797q-73 - 3533q-72 - 2189q-71 + 2195q-70 + 5265q-69 + 6485q-68 + 4826q-67 - 3342q-66 - 10791q-65 - 13857q-64 - 6418q-63 + 5054q-62 + 18157q-61 + 25060q-60 + 12966q-59 - 9550q-58 - 33295q-57 - 37526q-56 - 22549q-55 + 14193q-54 + 53926q-53 + 61632q-52 + 32396q-51 - 27693q-50 - 76883q-49 - 93269q-48 - 46014q-47 + 45802q-46 + 118029q-45 + 127831q-44 + 49918q-43 - 66677q-42 - 170101q-41 - 168708q-40 - 48773q-39 + 114335q-38 + 226763q-37 + 196099q-36 + 40026q-35 - 178799q-34 - 291732q-33 - 214092q-32 + 10151q-31 + 252753q-30 + 339031q-29 + 214506q-28 - 88324q-27 - 340384q-26 - 371767q-25 - 154929q-24 + 184915q-23 + 408956q-22 + 376191q-21 + 54698q-20 - 302849q-19 - 459218q-18 - 303606q-17 + 72234q-16 + 401180q-15 + 471852q-14 + 181047q-13 - 225982q-12 - 477196q-11 - 394216q-10 - 27314q-9 + 357649q-8 + 507058q-7 + 261553q-6 - 155019q-5 - 462097q-4 - 437520q-3 - 96500q-2 + 311797q-1 + 513517 + 311797q - 96500q2 - 437520q3 - 462097q4 - 155019q5 + 261553q6 + 507058q7 + 357649q8 - 27314q9 - 394216q10 - 477196q11 - 225982q12 + 181047q13 + 471852q14 + 401180q15 + 72234q16 - 303606q17 - 459218q18 - 302849q19 + 54698q20 + 376191q21 + 408956q22 + 184915q23 - 154929q24 - 371767q25 - 340384q26 - 88324q27 + 214506q28 + 339031q29 + 252753q30 + 10151q31 - 214092q32 - 291732q33 - 178799q34 + 40026q35 + 196099q36 + 226763q37 + 114335q38 - 48773q39 - 168708q40 - 170101q41 - 66677q42 + 49918q43 + 127831q44 + 118029q45 + 45802q46 - 46014q47 - 93269q48 - 76883q49 - 27693q50 + 32396q51 + 61632q52 + 53926q53 + 14193q54 - 22549q55 - 37526q56 - 33295q57 - 9550q58 + 12966q59 + 25060q60 + 18157q61 + 5054q62 - 6418q63 - 13857q64 - 10791q65 - 3342q66 + 4826q67 + 6485q68 + 5265q69 + 2195q70 - 2189q71 - 3533q72 - 2797q73 - 284q74 + 649q75 + 1389q76 + 1432q77 + 222q78 - 461q79 - 721q80 - 230q81 - 201q82 + 83q83 + 355q84 + 138q85 - 5q86 - 111q87 + 6q88 - 76q89 - 37q90 + 65q91 + 23q92 + 4q93 - 25q94 + 19q95 - 9q96 - 16q97 + 13q98 + 2q99 + q100 - 6q101 + 3q102 + 2q103 - 3q104 + q105
7 - q-140 + 3q-139 - 2q-138 - 3q-137 + 6q-136 - q-135 - 2q-134 - 8q-133 - 2q-132 + 26q-131 - 4q-130 - 16q-129 + 9q-128 - 10q-127 - 5q-126 - 33q-125 - 13q-124 + 116q-123 + 50q-122 - 26q-121 - 29q-120 - 125q-119 - 85q-118 - 157q-117 - 63q-116 + 419q-115 + 466q-114 + 337q-113 + 57q-112 - 600q-111 - 873q-110 - 1209q-109 - 936q-108 + 771q-107 + 2108q-106 + 3043q-105 + 2672q-104 + 56q-103 - 2810q-102 - 6207q-101 - 7597q-100 - 3984q-99 + 2271q-98 + 10373q-97 + 15922q-96 + 13509q-95 + 4436q-94 - 11677q-93 - 27637q-92 - 32189q-91 - 22927q-90 + 3288q-89 + 36742q-88 + 58999q-87 + 59556q-86 + 26928q-85 - 30379q-84 - 85635q-83 - 115374q-82 - 91056q-81 - 11249q-80 + 92139q-79 + 178949q-78 + 192793q-77 + 109393q-76 - 46212q-75 - 220989q-74 - 320461q-73 - 275920q-72 - 84834q-71 + 197453q-70 + 435313q-69 + 497518q-68 + 324571q-67 - 56417q-66 - 479434q-65 - 733438q-64 - 665495q-63 - 235794q-62 + 385160q-61 + 909654q-60 + 1062999q-59 + 685397q-58 - 99638q-57 - 946811q-56 - 1439200q-55 - 1248108q-54 - 391620q-53 + 773683q-52 + 1698527q-51 + 1845484q-50 + 1057111q-49 - 362517q-48 - 1760621q-47 - 2375083q-46 - 1817538q-45 - 266332q-44 + 1579475q-43 + 2744936q-42 + 2571998q-41 + 1043835q-40 - 1162411q-39 - 2896546q-38 - 3220809q-37 - 1872504q-36 + 563155q-35 + 2817908q-34 + 3693597q-33 + 2654224q-32 + 133791q-31 - 2544428q-30 - 3961664q-29 - 3310823q-28 - 837836q-27 + 2140085q-26 + 4038642q-25 + 3802262q-24 + 1473283q-23 - 1681858q-22 - 3967328q-21 - 4122739q-20 - 1994637q-19 + 1233620q-18 + 3806261q-17 + 4300157q-16 + 2385866q-15 - 843628q-14 - 3608276q-13 - 4371676q-12 - 2661339q-11 + 526463q-10 + 3415882q-9 + 4387166q-8 + 2849008q-7 - 284107q-6 - 3249145q-5 - 4377089q-4 - 2987401q-3 + 87368q-2 + 3111376q-1 + 4373931 + 3111376q + 87368q2 - 2987401q3 - 4377089q4 - 3249145q5 - 284107q6 + 2849008q7 + 4387166q8 + 3415882q9 + 526463q10 - 2661339q11 - 4371676q12 - 3608276q13 - 843628q14 + 2385866q15 + 4300157q16 + 3806261q17 + 1233620q18 - 1994637q19 - 4122739q20 - 3967328q21 - 1681858q22 + 1473283q23 + 3802262q24 + 4038642q25 + 2140085q26 - 837836q27 - 3310823q28 - 3961664q29 - 2544428q30 + 133791q31 + 2654224q32 + 3693597q33 + 2817908q34 + 563155q35 - 1872504q36 - 3220809q37 - 2896546q38 - 1162411q39 + 1043835q40 + 2571998q41 + 2744936q42 + 1579475q43 - 266332q44 - 1817538q45 - 2375083q46 - 1760621q47 - 362517q48 + 1057111q49 + 1845484q50 + 1698527q51 + 773683q52 - 391620q53 - 1248108q54 - 1439200q55 - 946811q56 - 99638q57 + 685397q58 + 1062999q59 + 909654q60 + 385160q61 - 235794q62 - 665495q63 - 733438q64 - 479434q65 - 56417q66 + 324571q67 + 497518q68 + 435313q69 + 197453q70 - 84834q71 - 275920q72 - 320461q73 - 220989q74 - 46212q75 + 109393q76 + 192793q77 + 178949q78 + 92139q79 - 11249q80 - 91056q81 - 115374q82 - 85635q83 - 30379q84 + 26928q85 + 59556q86 + 58999q87 + 36742q88 + 3288q89 - 22927q90 - 32189q91 - 27637q92 - 11677q93 + 4436q94 + 13509q95 + 15922q96 + 10373q97 + 2271q98 - 3984q99 - 7597q100 - 6207q101 - 2810q102 + 56q103 + 2672q104 + 3043q105 + 2108q106 + 771q107 - 936q108 - 1209q109 - 873q110 - 600q111 + 57q112 + 337q113 + 466q114 + 419q115 - 63q116 - 157q117 - 85q118 - 125q119 - 29q120 - 26q121 + 50q122 + 116q123 - 13q124 - 33q125 - 5q126 - 10q127 + 9q128 - 16q129 - 4q130 + 26q131 - 2q132 - 8q133 - 2q134 - q135 + 6q136 - 3q137 - 2q138 + 3q139 - q140


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 99]]
Out[2]=   
PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[16, 11, 17, 12], X[14, 7, 15, 8], 
 
>   X[8, 15, 9, 16], X[20, 13, 1, 14], X[12, 19, 13, 20], X[18, 6, 19, 5], 
 
>   X[2, 10, 3, 9], X[4, 18, 5, 17]]
In[3]:=
GaussCode[Knot[10, 99]]
Out[3]=   
GaussCode[1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 6, -4, 5, -3, 10, -8, 7, 
 
>   -6]
In[4]:=
DTCode[Knot[10, 99]]
Out[4]=   
DTCode[6, 10, 18, 14, 2, 16, 20, 8, 4, 12]
In[5]:=
br = BR[Knot[10, 99]]
Out[5]=   
BR[3, {-1, -1, 2, -1, -1, 2, 2, -1, 2, 2}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{3, 10}
In[7]:=
BraidIndex[Knot[10, 99]]
Out[7]=   
3
In[8]:=
Show[DrawMorseLink[Knot[10, 99]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 99]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{FullyAmphicheiral, 2, 4, 3, NotAvailable, 2}
In[10]:=
alex = Alexander[Knot[10, 99]][t]
Out[10]=   
      -4   4    10   16              2      3    4
19 + t   - -- + -- - -- - 16 t + 10 t  - 4 t  + t
            3    2   t
           t    t
In[11]:=
Conway[Knot[10, 99]][z]
Out[11]=   
       2      4      6    8
1 + 4 z  + 6 z  + 4 z  + z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 99]}
In[13]:=
{KnotDet[Knot[10, 99]], KnotSignature[Knot[10, 99]]}
Out[13]=   
{81, 0}
In[14]:=
Jones[Knot[10, 99]][q]
Out[14]=   
      -5   3    7    10   12              2      3      4    5
15 - q   + -- - -- + -- - -- - 12 q + 10 q  - 7 q  + 3 q  - q
            4    3    2   q
           q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 99]}
In[16]:=
A2Invariant[Knot[10, 99]][q]
Out[16]=   
     -14    -12    3     -6    -4   6       2    4    6      10    12    14
1 - q    + q    - --- - q   - q   + -- + 6 q  - q  - q  - 3 q   + q   - q
                   10                2
                  q                 q
In[17]:=
HOMFLYPT[Knot[10, 99]][a, z]
Out[17]=   
                           2                        4                     6
    4       2       2   6 z       2  2       4   4 z       2  4      6   z
9 - -- - 4 a  + 16 z  - ---- - 6 a  z  + 14 z  - ---- - 4 a  z  + 6 z  - -- - 
     2                    2                        2                      2
    a                    a                        a                      a
 
     2  6    8
>   a  z  + z
In[18]:=
Kauffman[Knot[10, 99]][a, z]
Out[18]=   
                                                                    2      2
    4       2   z    3 z   10 z               3      5         2   z    8 z
9 + -- + 4 a  + -- - --- - ---- - 10 a z - 3 a  z + a  z - 18 z  + -- - ---- - 
     2           5    3     a                                       4     2
    a           a    a                                             a     a
 
                         3      3       3
       2  2    4  2   2 z    5 z    21 z          3      3  3      5  3
>   8 a  z  + a  z  - ---- + ---- + ----- + 21 a z  + 5 a  z  - 2 a  z  + 
                        5      3      a
                       a      a
 
               4      4                        5      5       5
        4   5 z    9 z       2  4      4  4   z    9 z    18 z          5
>   28 z  - ---- + ---- + 9 a  z  - 5 a  z  + -- - ---- - ----- - 18 a z  - 
              4      2                         5     3      a
             a      a                         a     a
 
                                 6      6                          7      7
       3  5    5  5       6   3 z    9 z       2  6      4  6   5 z    5 z
>   9 a  z  + a  z  - 24 z  + ---- - ---- - 9 a  z  + 3 a  z  + ---- + ---- + 
                                4      2                          3     a
                               a      a                          a
 
                                  8                9
         7      3  7       8   5 z       2  8   2 z         9
>   5 a z  + 5 a  z  + 10 z  + ---- + 5 a  z  + ---- + 2 a z
                                 2               a
                                a
In[19]:=
{Vassiliev[2][Knot[10, 99]], Vassiliev[3][Knot[10, 99]]}
Out[19]=   
{4, 0}
In[20]:=
Kh[Knot[10, 99]][q, t]
Out[20]=   
8           1        2       1       5       2       5       5      7      5
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2    3     q t
          q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
               3        3  2      5  2      5  3      7  3    7  4      9  4
>   5 q t + 7 q  t + 5 q  t  + 5 q  t  + 2 q  t  + 5 q  t  + q  t  + 2 q  t  + 
 
     11  5
>   q   t
In[21]:=
ColouredJones[Knot[10, 99], 2][q]
Out[21]=   
       -15    3     2     8    19     5    37   53   7    91   85   40   146
171 + q    - --- + --- + --- - --- + --- + -- - -- - -- + -- - -- - -- + --- - 
              14    13    12    11    10    9    8    7    6    5    4    3
             q     q     q     q     q     q    q    q    q    q    q    q
 
    93   75              2        3       4       5       6      7       8
>   -- - -- - 75 q - 93 q  + 146 q  - 40 q  - 85 q  + 91 q  - 7 q  - 53 q  + 
     2   q
    q
 
        9      10       11      12      13      14    15
>   37 q  + 5 q   - 19 q   + 8 q   + 2 q   - 3 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1099
10.98
1098
10.100
10100