© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1098Visit 1098's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1098's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X3,10,4,11 X7,18,8,19 X17,8,18,9 X9,2,10,3 X11,16,12,17 X5,15,6,14 X15,5,16,4 X13,20,14,1 X19,12,20,13 |
Gauss Code: | {-1, 5, -2, 8, -7, 1, -3, 4, -5, 2, -6, 10, -9, 7, -8, 6, -4, 3, -10, 9} |
DT (Dowker-Thistlethwaite) Code: | 6 10 14 18 2 16 20 4 8 12 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 9t-2 - 18t-1 + 23 - 18t + 9t2 - 2t3 |
Conway Polynomial: | 1 - 3z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {1087, K11a58, K11a165, K11n72, ...} |
Determinant and Signature: | {81, -4} |
Jones Polynomial: | q-10 - 3q-9 + 7q-8 - 11q-7 + 12q-6 - 14q-5 + 13q-4 - 9q-3 + 7q-2 - 3q-1 + 1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-30 - q-28 + 2q-26 + 2q-24 - 3q-22 - 5q-18 - q-16 + q-14 + 5q-10 - q-8 + 2q-6 + q-4 - q-2 + 1 |
HOMFLY-PT Polynomial: | a2 + 2a2z2 + a2z4 + 3a4 + a4z2 - 2a4z4 - a4z6 - 5a6 - 5a6z2 - 3a6z4 - a6z6 + 2a8 + 2a8z2 + a8z4 |
Kauffman Polynomial: | - a2 + 3a2z2 - 3a2z4 + a2z6 + 5a3z3 - 8a3z5 + 3a3z7 + 3a4 - 2a4z2 + 4a4z4 - 9a4z6 + 4a4z8 - 6a5z + 14a5z3 - 17a5z5 + 3a5z7 + 2a5z9 + 5a6 - 10a6z2 + 17a6z4 - 23a6z6 + 10a6z8 - 12a7z + 25a7z3 - 26a7z5 + 8a7z7 + 2a7z9 + 2a8 + 2a8z4 - 7a8z6 + 6a8z8 - 6a9z + 14a9z3 - 14a9z5 + 8a9z7 + 4a10z2 - 7a10z4 + 6a10z6 - 2a11z3 + 3a11z5 - a12z2 + a12z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, 3} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 1098. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-28 - 3q-27 + 3q-26 + 5q-25 - 19q-24 + 16q-23 + 22q-22 - 62q-21 + 33q-20 + 63q-19 - 116q-18 + 37q-17 + 110q-16 - 147q-15 + 17q-14 + 136q-13 - 137q-12 - 13q-11 + 130q-10 - 93q-9 - 33q-8 + 94q-7 - 40q-6 - 34q-5 + 45q-4 - 7q-3 - 17q-2 + 11q-1 + 1 - 3q + q2 |
3 | q-54 - 3q-53 + 3q-52 + q-51 - 3q-50 - 6q-49 + 13q-48 + 9q-47 - 31q-46 - 21q-45 + 70q-44 + 42q-43 - 118q-42 - 104q-41 + 193q-40 + 195q-39 - 261q-38 - 325q-37 + 304q-36 + 495q-35 - 329q-34 - 649q-33 + 286q-32 + 807q-31 - 238q-30 - 894q-29 + 131q-28 + 961q-27 - 34q-26 - 955q-25 - 83q-24 + 920q-23 + 193q-22 - 844q-21 - 285q-20 + 718q-19 + 383q-18 - 599q-17 - 418q-16 + 421q-15 + 450q-14 - 279q-13 - 403q-12 + 121q-11 + 349q-10 - 26q-9 - 245q-8 - 47q-7 + 163q-6 + 58q-5 - 80q-4 - 55q-3 + 35q-2 + 34q-1 - 10 - 17q + 3q2 + 5q3 + q4 - 3q5 + q6 |
4 | q-88 - 3q-87 + 3q-86 + q-85 - 7q-84 + 10q-83 - 9q-82 + 10q-81 - 2q-80 - 36q-79 + 47q-78 - 3q-77 + 36q-76 - 38q-75 - 170q-74 + 121q-73 + 121q-72 + 216q-71 - 147q-70 - 664q-69 + 48q-68 + 474q-67 + 964q-66 - 46q-65 - 1754q-64 - 758q-63 + 710q-62 + 2591q-61 + 978q-60 - 2975q-59 - 2607q-58 - 5q-57 + 4448q-56 + 3163q-55 - 3280q-54 - 4700q-53 - 1880q-52 + 5354q-51 + 5546q-50 - 2340q-49 - 5826q-48 - 4023q-47 + 4939q-46 + 6975q-45 - 828q-44 - 5652q-43 - 5511q-42 + 3709q-41 + 7197q-40 + 638q-39 - 4600q-38 - 6208q-37 + 2109q-36 + 6557q-35 + 1950q-34 - 3014q-33 - 6245q-32 + 266q-31 + 5172q-30 + 3002q-29 - 997q-28 - 5467q-27 - 1488q-26 + 3057q-25 + 3274q-24 + 1000q-23 - 3698q-22 - 2366q-21 + 746q-20 + 2368q-19 + 2073q-18 - 1505q-17 - 1910q-16 - 712q-15 + 855q-14 + 1774q-13 - 20q-12 - 770q-11 - 853q-10 - 139q-9 + 815q-8 + 313q-7 - 17q-6 - 366q-5 - 280q-4 + 177q-3 + 125q-2 + 109q-1 - 57 - 109q + 15q2 + 7q3 + 36q4 + 2q5 - 20q6 + 3q7 - 3q8 + 5q9 + q10 - 3q11 + q12 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 98]] |
Out[2]= | PD[X[1, 6, 2, 7], X[3, 10, 4, 11], X[7, 18, 8, 19], X[17, 8, 18, 9], > X[9, 2, 10, 3], X[11, 16, 12, 17], X[5, 15, 6, 14], X[15, 5, 16, 4], > X[13, 20, 14, 1], X[19, 12, 20, 13]] |
In[3]:= | GaussCode[Knot[10, 98]] |
Out[3]= | GaussCode[-1, 5, -2, 8, -7, 1, -3, 4, -5, 2, -6, 10, -9, 7, -8, 6, -4, 3, -10, > 9] |
In[4]:= | DTCode[Knot[10, 98]] |
Out[4]= | DTCode[6, 10, 14, 18, 2, 16, 20, 4, 8, 12] |
In[5]:= | br = BR[Knot[10, 98]] |
Out[5]= | BR[4, {-1, -1, -2, -2, 3, -2, 1, -2, -2, 3, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 98]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 98]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 98]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 2, 3, 3, NotAvailable, 2} |
In[10]:= | alex = Alexander[Knot[10, 98]][t] |
Out[10]= | 2 9 18 2 3 23 - -- + -- - -- - 18 t + 9 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 98]][z] |
Out[11]= | 4 6 1 - 3 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 87], Knot[10, 98], Knot[11, Alternating, 58], > Knot[11, Alternating, 165], Knot[11, NonAlternating, 72]} |
In[13]:= | {KnotDet[Knot[10, 98]], KnotSignature[Knot[10, 98]]} |
Out[13]= | {81, -4} |
In[14]:= | Jones[Knot[10, 98]][q] |
Out[14]= | -10 3 7 11 12 14 13 9 7 3 1 + q - -- + -- - -- + -- - -- + -- - -- + -- - - 9 8 7 6 5 4 3 2 q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 98]} |
In[16]:= | A2Invariant[Knot[10, 98]][q] |
Out[16]= | -30 -28 2 2 3 5 -16 -14 5 -8 2 -4 1 + q - q + --- + --- - --- - --- - q + q + --- - q + -- + q - 26 24 22 18 10 6 q q q q q q -2 > q |
In[17]:= | HOMFLYPT[Knot[10, 98]][a, z] |
Out[17]= | 2 4 6 8 2 2 4 2 6 2 8 2 2 4 a + 3 a - 5 a + 2 a + 2 a z + a z - 5 a z + 2 a z + a z - 4 4 6 4 8 4 4 6 6 6 > 2 a z - 3 a z + a z - a z - a z |
In[18]:= | Kauffman[Knot[10, 98]][a, z] |
Out[18]= | 2 4 6 8 5 7 9 2 2 4 2 -a + 3 a + 5 a + 2 a - 6 a z - 12 a z - 6 a z + 3 a z - 2 a z - 6 2 10 2 12 2 3 3 5 3 7 3 9 3 > 10 a z + 4 a z - a z + 5 a z + 14 a z + 25 a z + 14 a z - 11 3 2 4 4 4 6 4 8 4 10 4 12 4 > 2 a z - 3 a z + 4 a z + 17 a z + 2 a z - 7 a z + a z - 3 5 5 5 7 5 9 5 11 5 2 6 4 6 > 8 a z - 17 a z - 26 a z - 14 a z + 3 a z + a z - 9 a z - 6 6 8 6 10 6 3 7 5 7 7 7 9 7 > 23 a z - 7 a z + 6 a z + 3 a z + 3 a z + 8 a z + 8 a z + 4 8 6 8 8 8 5 9 7 9 > 4 a z + 10 a z + 6 a z + 2 a z + 2 a z |
In[19]:= | {Vassiliev[2][Knot[10, 98]], Vassiliev[3][Knot[10, 98]]} |
Out[19]= | {0, 3} |
In[20]:= | Kh[Knot[10, 98]][q, t] |
Out[20]= | 3 5 1 2 1 5 2 6 5 -- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 5 3 21 8 19 7 17 7 17 6 15 6 15 5 13 5 q q q t q t q t q t q t q t q t 6 6 8 6 5 8 4 5 t 2 t > ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + -- + --- + 13 4 11 4 11 3 9 3 9 2 7 2 7 5 3 q q t q t q t q t q t q t q t q t q 2 > q t |
In[21]:= | ColouredJones[Knot[10, 98], 2][q] |
Out[21]= | -28 3 3 5 19 16 22 62 33 63 116 37 1 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + 27 26 25 24 23 22 21 20 19 18 17 q q q q q q q q q q q 110 147 17 136 137 13 130 93 33 94 40 34 45 > --- - --- + --- + --- - --- - --- + --- - -- - -- + -- - -- - -- + -- - 16 15 14 13 12 11 10 9 8 7 6 5 4 q q q q q q q q q q q q q 7 17 11 2 > -- - -- + -- - 3 q + q 3 2 q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1098 |
|