© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.99
1099
10.101
10101
    10.100
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 10100   

Visit 10100's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10100's page at Knotilus!

Acknowledgement

10.100
KnotPlot

PD Presentation: X6271 X18,6,19,5 X20,13,1,14 X14,7,15,8 X10,3,11,4 X16,9,17,10 X4,11,5,12 X8,15,9,16 X12,19,13,20 X2,18,3,17

Gauss Code: {1, -10, 5, -7, 2, -1, 4, -8, 6, -5, 7, -9, 3, -4, 8, -6, 10, -2, 9, -3}

DT (Dowker-Thistlethwaite) Code: 6 10 18 14 16 4 20 8 2 12

Minimum Braid Representative:


Length is 10, width is 3
Braid index is 3

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 2--3 4 3 / NotAvailable 1

Alexander Polynomial: t-4 - 4t-3 + 9t-2 - 12t-1 + 13 - 12t + 9t2 - 4t3 + t4

Conway Polynomial: 1 + 4z2 + 5z4 + 4z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {65, -4}

Jones Polynomial: - q-9 + 3q-8 - 6q-7 + 8q-6 - 10q-5 + 11q-4 - 9q-3 + 8q-2 - 5q-1 + 3 - q

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-26 + q-24 - 2q-22 - q-18 - q-16 + 3q-14 - q-12 + 4q-10 + q-6 + q-4 - q-2 + 1 - q2

HOMFLY-PT Polynomial: - a2 - 4a2z2 - 4a2z4 - a2z6 + 5a4 + 13a4z2 + 13a4z4 + 6a4z6 + a4z8 - 3a6 - 5a6z2 - 4a6z4 - a6z6

Kauffman Polynomial: - 2az + 5az3 - 4az5 + az7 + a2 - 7a2z2 + 17a2z4 - 13a2z6 + 3a2z8 - 6a3z + 20a3z3 - 11a3z5 - 3a3z7 + 2a3z9 + 5a4 - 17a4z2 + 36a4z4 - 33a4z6 + 9a4z8 - 8a5z + 26a5z3 - 27a5z5 + 4a5z7 + 2a5z9 + 3a6 - 6a6z2 + 5a6z4 - 12a6z6 + 6a6z8 - 2a7z + 5a7z3 - 14a7z5 + 8a7z7 + 4a8z2 - 11a8z4 + 8a8z6 + 2a9z - 5a9z3 + 6a9z5 + 3a10z4 + a11z3

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, -7}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 10100. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 3          1
j = 1         2 
j = -1        31 
j = -3       52  
j = -5      54   
j = -7     64    
j = -9    45     
j = -11   46      
j = -13  24       
j = -15 14        
j = -17 2         
j = -191          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-25 - 3q-24 + 3q-23 + 4q-22 - 14q-21 + 13q-20 + 6q-19 - 32q-18 + 34q-17 + 7q-16 - 57q-15 + 51q-14 + 19q-13 - 77q-12 + 49q-11 + 37q-10 - 81q-9 + 33q-8 + 47q-7 - 66q-6 + 12q-5 + 45q-4 - 40q-3 - 5q-2 + 30q-1 - 14 - 9q + 11q2 - q3 - 3q4 + q5
3 - q-48 + 3q-47 - 3q-46 - q-45 + 2q-44 + 5q-43 - 6q-42 - 5q-41 + 9q-40 + q-39 - 12q-38 + 13q-37 + 14q-36 - 33q-35 - 31q-34 + 74q-33 + 48q-32 - 107q-31 - 91q-30 + 141q-29 + 137q-28 - 151q-27 - 186q-26 + 138q-25 + 227q-24 - 107q-23 - 246q-22 + 54q-21 + 261q-20 - 14q-19 - 242q-18 - 48q-17 + 236q-16 + 80q-15 - 198q-14 - 131q-13 + 176q-12 + 151q-11 - 123q-10 - 178q-9 + 80q-8 + 175q-7 - 20q-6 - 166q-5 - 20q-4 + 128q-3 + 57q-2 - 87q-1 - 68 + 44q + 61q2 - 12q3 - 42q4 - 6q5 + 23q6 + 9q7 - 9q8 - 5q9 + q10 + 3q11 - q12
4 q-78 - 3q-77 + 3q-76 + q-75 - 5q-74 + 7q-73 - 12q-72 + 11q-71 + 4q-70 - 14q-69 + 25q-68 - 45q-67 + 16q-66 + 22q-65 + q-64 + 70q-63 - 144q-62 - 42q-61 + 58q-60 + 133q-59 + 220q-58 - 348q-57 - 308q-56 + 25q-55 + 454q-54 + 651q-53 - 526q-52 - 857q-51 - 308q-50 + 769q-49 + 1399q-48 - 372q-47 - 1372q-46 - 966q-45 + 679q-44 + 2059q-43 + 147q-42 - 1401q-41 - 1527q-40 + 176q-39 + 2192q-38 + 618q-37 - 962q-36 - 1629q-35 - 364q-34 + 1865q-33 + 790q-32 - 420q-31 - 1402q-30 - 724q-29 + 1394q-28 + 785q-27 + 59q-26 - 1082q-25 - 976q-24 + 875q-23 + 725q-22 + 515q-21 - 676q-20 - 1126q-19 + 272q-18 + 503q-17 + 875q-16 - 117q-15 - 997q-14 - 276q-13 + 35q-12 + 888q-11 + 417q-10 - 503q-9 - 459q-8 - 457q-7 + 475q-6 + 576q-5 + 55q-4 - 199q-3 - 577q-2 - 16q-1 + 302 + 258q + 135q2 - 310q3 - 179q4 - 9q5 + 118q6 + 189q7 - 43q8 - 74q9 - 74q10 - 14q11 + 73q12 + 18q13 + 4q14 - 21q15 - 19q16 + 9q17 + 3q18 + 5q19 - q20 - 3q21 + q22
5 - q-115 + 3q-114 - 3q-113 - q-112 + 5q-111 - 4q-110 + 7q-108 - 10q-107 - 5q-106 + 12q-105 + 2q-104 + 5q-103 + 9q-102 - 35q-101 - 36q-100 + 18q-99 + 72q-98 + 74q-97 - 10q-96 - 164q-95 - 209q-94 + 25q-93 + 359q-92 + 429q-91 - 3q-90 - 672q-89 - 871q-88 - 98q-87 + 1158q-86 + 1625q-85 + 392q-84 - 1812q-83 - 2782q-82 - 1000q-81 + 2448q-80 + 4390q-79 + 2197q-78 - 2973q-77 - 6337q-76 - 3938q-75 + 2961q-74 + 8290q-73 + 6350q-72 - 2276q-71 - 9955q-70 - 8957q-69 + 784q-68 + 10834q-67 + 11479q-66 + 1287q-65 - 10792q-64 - 13381q-63 - 3574q-62 + 9866q-61 + 14382q-60 + 5626q-59 - 8317q-58 - 14466q-57 - 7130q-56 + 6582q-55 + 13762q-54 + 8002q-53 - 4934q-52 - 12688q-51 - 8266q-50 + 3555q-49 + 11412q-48 + 8284q-47 - 2413q-46 - 10298q-45 - 8110q-44 + 1424q-43 + 9112q-42 + 8105q-41 - 347q-40 - 8111q-39 - 8035q-38 - 792q-37 + 6763q-36 + 8050q-35 + 2160q-34 - 5360q-33 - 7762q-32 - 3456q-31 + 3472q-30 + 7169q-29 + 4687q-28 - 1527q-27 - 6012q-26 - 5419q-25 - 594q-24 + 4405q-23 + 5597q-22 + 2339q-21 - 2373q-20 - 4973q-19 - 3658q-18 + 336q-17 + 3720q-16 + 4064q-15 + 1483q-14 - 1978q-13 - 3730q-12 - 2625q-11 + 250q-10 + 2616q-9 + 2958q-8 + 1193q-7 - 1235q-6 - 2522q-5 - 1921q-4 - 94q-3 + 1571q-2 + 1964q-1 + 973 - 524q - 1450q2 - 1279q3 - 276q4 + 722q5 + 1078q6 + 674q7 - 91q8 - 652q9 - 671q10 - 249q11 + 215q12 + 443q13 + 342q14 + 44q15 - 206q16 - 243q17 - 121q18 + 24q19 + 122q20 + 112q21 + 26q22 - 40q23 - 48q24 - 31q25 - 6q26 + 24q27 + 17q28 + q29 - 3q30 - 3q31 - 5q32 + q33 + 3q34 - q35
6 q-159 - 3q-158 + 3q-157 + q-156 - 5q-155 + 4q-154 - 3q-153 + 5q-152 - 8q-151 + 11q-150 + 7q-149 - 33q-148 + 14q-147 + 15q-145 - q-144 + 33q-143 + q-142 - 133q-141 + 5q-140 + 38q-139 + 105q-138 + 93q-137 + 87q-136 - 137q-135 - 503q-134 - 111q-133 + 238q-132 + 601q-131 + 581q-130 + 165q-129 - 869q-128 - 1828q-127 - 685q-126 + 1024q-125 + 2590q-124 + 2555q-123 + 408q-122 - 3416q-121 - 6102q-120 - 3173q-119 + 2804q-118 + 8461q-117 + 9132q-116 + 2563q-115 - 8931q-114 - 17113q-113 - 11984q-112 + 3357q-111 + 19968q-110 + 25511q-109 + 12598q-108 - 14076q-107 - 36543q-106 - 33548q-105 - 5501q-104 + 31575q-103 + 52390q-102 + 37948q-101 - 7782q-100 - 55462q-99 - 66571q-98 - 31931q-97 + 29011q-96 + 76731q-95 + 74510q-94 + 18130q-93 - 56804q-92 - 93965q-91 - 68569q-90 + 5225q-89 + 80059q-88 + 102074q-87 + 52783q-86 - 35952q-85 - 97744q-84 - 93598q-83 - 25684q-82 + 61282q-81 + 105117q-80 + 74515q-79 - 9354q-78 - 80913q-77 - 95495q-76 - 43936q-75 + 38096q-74 + 90562q-73 + 76463q-72 + 6384q-71 - 61197q-70 - 84229q-69 - 47139q-68 + 23461q-67 + 74952q-66 + 70217q-65 + 12406q-64 - 47917q-63 - 74086q-62 - 46977q-61 + 13966q-60 + 64101q-59 + 66989q-58 + 19279q-57 - 36242q-56 - 67584q-55 - 51330q-54 + 705q-53 + 52126q-52 + 66285q-51 + 31769q-50 - 18601q-49 - 57791q-48 - 57219q-47 - 18720q-46 + 32219q-45 + 60092q-44 + 44853q-43 + 5890q-42 - 37995q-41 - 55499q-40 - 37739q-39 + 4409q-38 + 41470q-37 + 48161q-36 + 29292q-35 - 8916q-34 - 38854q-33 - 44707q-32 - 21864q-31 + 12026q-30 + 34045q-29 + 38577q-28 + 18219q-27 - 10152q-26 - 31979q-25 - 32184q-24 - 14860q-23 + 7143q-22 + 26579q-21 + 27824q-20 + 14904q-19 - 6517q-18 - 20536q-17 - 22930q-16 - 14659q-15 + 3021q-14 + 15843q-13 + 20246q-12 + 12059q-11 + 462q-10 - 10863q-9 - 16653q-8 - 11642q-7 - 2435q-6 + 7941q-5 + 11568q-4 + 10812q-3 + 4088q-2 - 4563q-1 - 8823 - 8910q - 3886q2 + 1007q3 + 6233q4 + 7085q5 + 4063q6 + 66q7 - 3674q8 - 4575q9 - 4189q10 - 774q11 + 1935q12 + 3158q13 + 2857q14 + 1196q15 - 414q16 - 2198q17 - 1901q18 - 1100q19 + 48q20 + 912q21 + 1208q22 + 1021q23 + 24q24 - 359q25 - 650q26 - 525q27 - 258q28 + 113q29 + 391q30 + 224q31 + 166q32 - 15q33 - 102q34 - 160q35 - 86q36 + 24q37 + 17q38 + 54q39 + 32q40 + 18q41 - 22q42 - 20q43 + q44 - 7q45 + 3q46 + 3q47 + 5q48 - q49 - 3q50 + q51
7 - q-210 + 3q-209 - 3q-208 - q-207 + 5q-206 - 4q-205 + 3q-204 - 2q-203 - 4q-202 + 7q-201 - 13q-200 + 14q-199 + 17q-198 - 25q-197 - 9q-195 - 7q-194 + 19q-193 - 15q-192 + 67q-191 + 45q-190 - 95q-189 - 62q-188 - 76q-187 + 12q-186 + 137q-185 + 96q-184 + 198q-183 + 23q-182 - 378q-181 - 387q-180 - 295q-179 + 228q-178 + 834q-177 + 731q-176 + 416q-175 - 628q-174 - 1784q-173 - 1682q-172 - 605q-171 + 1849q-170 + 3997q-169 + 3438q-168 + 551q-167 - 4329q-166 - 8159q-165 - 7008q-164 - 886q-163 + 8993q-162 + 16429q-161 + 14207q-160 + 1878q-159 - 16908q-158 - 30779q-157 - 27676q-156 - 5736q-155 + 28017q-154 + 54076q-153 + 51860q-152 + 16208q-151 - 41165q-150 - 88419q-149 - 91351q-148 - 38838q-147 + 51937q-146 + 132689q-145 + 150082q-144 + 81540q-143 - 52355q-142 - 182686q-141 - 228985q-140 - 150026q-139 + 32574q-138 + 227682q-137 + 321981q-136 + 247180q-135 + 18061q-134 - 254086q-133 - 417546q-132 - 367730q-131 - 103703q-130 + 247922q-129 + 497335q-128 + 497696q-127 + 221449q-126 - 200247q-125 - 544252q-124 - 617571q-123 - 357059q-122 + 113150q-121 + 545985q-120 + 706307q-119 + 489838q-118 + 1263q-117 - 501621q-116 - 750002q-115 - 598036q-114 - 122490q-113 + 422166q-112 + 745503q-111 + 665983q-110 + 228796q-109 - 326167q-108 - 701239q-107 - 689433q-106 - 304978q-105 + 233991q-104 + 634500q-103 + 675023q-102 + 345245q-101 - 160559q-100 - 563173q-99 - 637206q-98 - 354985q-97 + 111798q-96 + 501423q-95 + 592280q-94 + 345996q-93 - 84629q-92 - 455861q-91 - 552941q-90 - 331531q-89 + 70086q-88 + 424782q-87 + 525503q-86 + 323256q-85 - 57203q-84 - 402564q-83 - 510555q-82 - 326356q-81 + 37481q-80 + 380158q-79 + 502989q-78 + 342478q-77 - 4641q-76 - 350626q-75 - 497145q-74 - 367946q-73 - 41797q-72 + 308019q-71 + 484738q-70 + 397494q-69 + 101431q-68 - 249571q-67 - 460763q-66 - 424114q-65 - 168592q-64 + 174939q-63 + 418790q-62 + 440210q-61 + 238061q-60 - 86156q-59 - 356821q-58 - 438577q-57 - 300528q-56 - 11247q-55 + 273413q-54 + 412503q-53 + 347223q-52 + 109201q-51 - 172267q-50 - 358483q-49 - 368133q-48 - 196377q-47 + 60699q-46 + 276725q-45 + 356125q-44 + 260535q-43 + 48992q-42 - 173431q-41 - 308145q-40 - 290647q-39 - 142361q-38 + 60896q-37 + 228649q-36 + 280149q-35 + 204456q-34 + 44437q-33 - 128449q-32 - 230552q-31 - 225990q-30 - 125159q-29 + 25933q-28 + 151895q-27 + 204298q-26 + 167961q-25 + 60412q-24 - 61435q-23 - 148442q-22 - 168422q-21 - 114058q-20 - 19990q-19 + 74415q-18 + 131983q-17 + 128401q-16 + 75648q-15 - 2772q-14 - 74535q-13 - 107287q-12 - 96339q-11 - 48647q-10 + 14944q-9 + 63940q-8 + 84897q-7 + 70934q-6 + 29530q-5 - 16683q-4 - 52873q-3 - 65083q-2 - 49857q-1 - 19402 + 15958q + 41530q2 + 47182q3 + 36186q4 + 12090q5 - 13765q6 - 29957q7 - 34431q8 - 24986q9 - 7373q10 + 9574q11 + 21877q12 + 23890q13 + 16499q14 + 5222q15 - 7134q16 - 14675q17 - 15512q18 - 11456q19 - 3055q20 + 4772q21 + 9191q22 + 10172q23 + 6863q24 + 1939q25 - 2551q26 - 5905q27 - 6048q28 - 4032q29 - 1280q30 + 1716q31 + 3141q32 + 3305q33 + 2481q34 + 594q35 - 887q36 - 1675q37 - 1801q38 - 1082q39 - 351q40 + 331q41 + 902q42 + 822q43 + 531q44 + 135q45 - 240q46 - 306q47 - 331q48 - 255q49 - 33q50 + 90q51 + 148q52 + 129q53 + 35q54 + 21q55 - 19q56 - 57q57 - 37q58 - 19q59 + 10q60 + 18q61 + 2q62 + 5q63 + 7q64 - 3q65 - 3q66 - 5q67 + q68 + 3q69 - q70


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 100]]
Out[2]=   
PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[14, 7, 15, 8], 
 
>   X[10, 3, 11, 4], X[16, 9, 17, 10], X[4, 11, 5, 12], X[8, 15, 9, 16], 
 
>   X[12, 19, 13, 20], X[2, 18, 3, 17]]
In[3]:=
GaussCode[Knot[10, 100]]
Out[3]=   
GaussCode[1, -10, 5, -7, 2, -1, 4, -8, 6, -5, 7, -9, 3, -4, 8, -6, 10, -2, 9, 
 
>   -3]
In[4]:=
DTCode[Knot[10, 100]]
Out[4]=   
DTCode[6, 10, 18, 14, 16, 4, 20, 8, 2, 12]
In[5]:=
br = BR[Knot[10, 100]]
Out[5]=   
BR[3, {-1, -1, -1, 2, -1, -1, 2, -1, -1, 2}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{3, 10}
In[7]:=
BraidIndex[Knot[10, 100]]
Out[7]=   
3
In[8]:=
Show[DrawMorseLink[Knot[10, 100]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 100]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, {2, 3}, 4, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 100]][t]
Out[10]=   
      -4   4    9    12             2      3    4
13 + t   - -- + -- - -- - 12 t + 9 t  - 4 t  + t
            3    2   t
           t    t
In[11]:=
Conway[Knot[10, 100]][z]
Out[11]=   
       2      4      6    8
1 + 4 z  + 5 z  + 4 z  + z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 100]}
In[13]:=
{KnotDet[Knot[10, 100]], KnotSignature[Knot[10, 100]]}
Out[13]=   
{65, -4}
In[14]:=
Jones[Knot[10, 100]][q]
Out[14]=   
     -9   3    6    8    10   11   9    8    5
3 - q   + -- - -- + -- - -- + -- - -- + -- - - - q
           8    7    6    5    4    3    2   q
          q    q    q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 100]}
In[16]:=
A2Invariant[Knot[10, 100]][q]
Out[16]=   
     -26    -24    2     -18    -16    3     -12    4     -6    -4    -2    2
1 - q    + q    - --- - q    - q    + --- - q    + --- + q   + q   - q   - q
                   22                  14           10
                  q                   q            q
In[17]:=
HOMFLYPT[Knot[10, 100]][a, z]
Out[17]=   
  2      4      6      2  2       4  2      6  2      2  4       4  4
-a  + 5 a  - 3 a  - 4 a  z  + 13 a  z  - 5 a  z  - 4 a  z  + 13 a  z  - 
 
       6  4    2  6      4  6    6  6    4  8
>   4 a  z  - a  z  + 6 a  z  - a  z  + a  z
In[18]:=
Kauffman[Knot[10, 100]][a, z]
Out[18]=   
 2      4      6              3        5        7        9        2  2
a  + 5 a  + 3 a  - 2 a z - 6 a  z - 8 a  z - 2 a  z + 2 a  z - 7 a  z  - 
 
        4  2      6  2      8  2        3       3  3       5  3      7  3
>   17 a  z  - 6 a  z  + 4 a  z  + 5 a z  + 20 a  z  + 26 a  z  + 5 a  z  - 
 
       9  3    11  3       2  4       4  4      6  4       8  4      10  4
>   5 a  z  + a   z  + 17 a  z  + 36 a  z  + 5 a  z  - 11 a  z  + 3 a   z  - 
 
         5       3  5       5  5       7  5      9  5       2  6       4  6
>   4 a z  - 11 a  z  - 27 a  z  - 14 a  z  + 6 a  z  - 13 a  z  - 33 a  z  - 
 
        6  6      8  6      7      3  7      5  7      7  7      2  8
>   12 a  z  + 8 a  z  + a z  - 3 a  z  + 4 a  z  + 8 a  z  + 3 a  z  + 
 
       4  8      6  8      3  9      5  9
>   9 a  z  + 6 a  z  + 2 a  z  + 2 a  z
In[19]:=
{Vassiliev[2][Knot[10, 100]], Vassiliev[3][Knot[10, 100]]}
Out[19]=   
{4, -7}
In[20]:=
Kh[Knot[10, 100]][q, t]
Out[20]=   
4    5      1        2        1        4        2        4        4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 5    3    19  7    17  6    15  6    15  5    13  5    13  4    11  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
                                                                2
      6        4       5       6      4      5     2 t   3 t   t         2
>   ------ + ----- + ----- + ----- + ---- + ---- + --- + --- + -- + 2 q t  + 
     11  3    9  3    9  2    7  2    7      5      3     q    q
    q   t    q  t    q  t    q  t    q  t   q  t   q
 
     3  3
>   q  t
In[21]:=
ColouredJones[Knot[10, 100], 2][q]
Out[21]=   
       -25    3     3     4    14    13     6    32    34     7    57    51
-14 + q    - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + 
              24    23    22    21    20    19    18    17    16    15    14
             q     q     q     q     q     q     q     q     q     q     q
 
    19    77    49    37    81   33   47   66   12   45   40   5    30
>   --- - --- + --- + --- - -- + -- + -- - -- + -- + -- - -- - -- + -- - 9 q + 
     13    12    11    10    9    8    7    6    5    4    3    2   q
    q     q     q     q     q    q    q    q    q    q    q    q
 
        2    3      4    5
>   11 q  - q  - 3 q  + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10100
10.99
1099
10.101
10101