© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.100
10100
10.102
10102
    10.101
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 10101   

Visit 10101's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10101's page at Knotilus!

Acknowledgement

10.101
KnotPlot

PD Presentation: X4251 X10,4,11,3 X14,6,15,5 X20,16,1,15 X16,12,17,11 X12,20,13,19 X18,8,19,7 X6,14,7,13 X8,18,9,17 X2,10,3,9

Gauss Code: {1, -10, 2, -1, 3, -8, 7, -9, 10, -2, 5, -6, 8, -3, 4, -5, 9, -7, 6, -4}

DT (Dowker-Thistlethwaite) Code: 4 10 14 18 2 16 6 20 8 12

Minimum Braid Representative:


Length is 14, width is 5
Braid index is 5

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 2--3 2 3 / NotAvailable 2

Alexander Polynomial: 7t-2 - 21t-1 + 29 - 21t + 7t2

Conway Polynomial: 1 + 7z2 + 7z4

Other knots with the same Alexander/Conway Polynomial: {K11a200, ...}

Determinant and Signature: {85, 4}

Jones Polynomial: q2 - 3q3 + 7q4 - 10q5 + 14q6 - 14q7 + 13q8 - 11q9 + 7q10 - 4q11 + q12

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q6 - 2q8 + 2q10 + q12 - 2q14 + 4q16 + 2q20 + 2q22 - q24 + 2q26 - 4q28 - q30 - 3q34 + q36 + q38

HOMFLY-PT Polynomial: a-12 - 4a-10 - 4a-10z2 + 2a-8 + 5a-8z2 + 3a-8z4 + 2a-6 + 5a-6z2 + 3a-6z4 + a-4z2 + a-4z4

Kauffman Polynomial: a-14z2 - 2a-14z4 + a-14z6 - a-13z + 8a-13z3 - 11a-13z5 + 4a-13z7 + a-12 + a-12z2 + 3a-12z4 - 11a-12z6 + 5a-12z8 - 9a-11z + 28a-11z3 - 31a-11z5 + 7a-11z7 + 2a-11z9 + 4a-10 - 9a-10z2 + 15a-10z4 - 24a-10z6 + 11a-10z8 - 8a-9z + 26a-9z3 - 31a-9z5 + 10a-9z7 + 2a-9z9 + 2a-8 - a-8z2 + a-8z4 - 6a-8z6 + 6a-8z8 + 4a-7z3 - 8a-7z5 + 7a-7z7 - 2a-6 + 7a-6z2 - 8a-6z4 + 6a-6z6 - 2a-5z3 + 3a-5z5 - a-4z2 + a-4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {7, 17}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 10101. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10
j = 25          1
j = 23         3 
j = 21        41 
j = 19       73  
j = 17      64   
j = 15     87    
j = 13    66     
j = 11   48      
j = 9  36       
j = 7  4        
j = 513         
j = 31          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q4 - 3q5 + 3q6 + 6q7 - 18q8 + 15q9 + 20q10 - 59q11 + 39q12 + 55q13 - 120q14 + 50q15 + 104q16 - 161q17 + 35q18 + 137q19 - 156q20 + 3q21 + 138q22 - 114q23 - 26q24 + 107q25 - 56q26 - 35q27 + 56q28 - 12q29 - 21q30 + 15q31 + q32 - 4q33 + q34
3 q6 - 3q7 + 3q8 + 2q9 - 2q10 - 8q11 + 11q12 + 10q13 - 24q14 - 16q15 + 60q16 + 22q17 - 110q18 - 62q19 + 209q20 + 113q21 - 301q22 - 235q23 + 416q24 + 375q25 - 478q26 - 568q27 + 524q28 + 723q29 - 479q30 - 889q31 + 426q32 + 974q33 - 310q34 - 1032q35 + 192q36 + 1025q37 - 55q38 - 981q39 - 84q40 + 902q41 + 207q42 - 775q43 - 322q44 + 630q45 + 388q46 - 448q47 - 424q48 + 286q49 + 385q50 - 123q51 - 322q52 + 19q53 + 224q54 + 43q55 - 135q56 - 54q57 + 60q58 + 47q59 - 24q60 - 24q61 + 5q62 + 9q63 + q64 - 4q65 + q66


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 101]]
Out[2]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[20, 16, 1, 15], 
 
>   X[16, 12, 17, 11], X[12, 20, 13, 19], X[18, 8, 19, 7], X[6, 14, 7, 13], 
 
>   X[8, 18, 9, 17], X[2, 10, 3, 9]]
In[3]:=
GaussCode[Knot[10, 101]]
Out[3]=   
GaussCode[1, -10, 2, -1, 3, -8, 7, -9, 10, -2, 5, -6, 8, -3, 4, -5, 9, -7, 6, 
 
>   -4]
In[4]:=
DTCode[Knot[10, 101]]
Out[4]=   
DTCode[4, 10, 14, 18, 2, 16, 6, 20, 8, 12]
In[5]:=
br = BR[Knot[10, 101]]
Out[5]=   
BR[5, {1, 1, 1, 2, -1, 3, -2, 1, 3, 2, 2, 4, -3, 4}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{5, 14}
In[7]:=
BraidIndex[Knot[10, 101]]
Out[7]=   
5
In[8]:=
Show[DrawMorseLink[Knot[10, 101]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 101]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, {2, 3}, 2, 3, NotAvailable, 2}
In[10]:=
alex = Alexander[Knot[10, 101]][t]
Out[10]=   
     7    21             2
29 + -- - -- - 21 t + 7 t
      2   t
     t
In[11]:=
Conway[Knot[10, 101]][z]
Out[11]=   
       2      4
1 + 7 z  + 7 z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 101], Knot[11, Alternating, 200]}
In[13]:=
{KnotDet[Knot[10, 101]], KnotSignature[Knot[10, 101]]}
Out[13]=   
{85, 4}
In[14]:=
Jones[Knot[10, 101]][q]
Out[14]=   
 2      3      4       5       6       7       8       9      10      11    12
q  - 3 q  + 7 q  - 10 q  + 14 q  - 14 q  + 13 q  - 11 q  + 7 q   - 4 q   + q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 101]}
In[16]:=
A2Invariant[Knot[10, 101]][q]
Out[16]=   
 6      8      10    12      14      16      20      22    24      26      28
q  - 2 q  + 2 q   + q   - 2 q   + 4 q   + 2 q   + 2 q   - q   + 2 q   - 4 q   - 
 
     30      34    36    38
>   q   - 3 q   + q   + q
In[17]:=
HOMFLYPT[Knot[10, 101]][a, z]
Out[17]=   
                          2      2      2    2      4      4    4
 -12    4    2    2    4 z    5 z    5 z    z    3 z    3 z    z
a    - --- + -- + -- - ---- + ---- + ---- + -- + ---- + ---- + --
        10    8    6    10      8      6     4     8      6     4
       a     a    a    a       a      a     a     a      a     a
In[18]:=
Kauffman[Knot[10, 101]][a, z]
Out[18]=   
                                          2     2       2    2      2    2
 -12    4    2    2     z    9 z   8 z   z     z     9 z    z    7 z    z
a    + --- + -- - -- - --- - --- - --- + --- + --- - ---- - -- + ---- - -- + 
        10    8    6    13    11    9     14    12    10     8     6     4
       a     a    a    a     a     a     a     a     a      a     a     a
 
       3       3       3      3      3      4      4       4    4      4    4
    8 z    28 z    26 z    4 z    2 z    2 z    3 z    15 z    z    8 z    z
>   ---- + ----- + ----- + ---- - ---- - ---- + ---- + ----- + -- - ---- + -- - 
     13      11      9       7      5     14     12      10     8     6     4
    a       a       a       a      a     a      a       a      a     a     a
 
        5       5       5      5      5    6        6       6      6      6
    11 z    31 z    31 z    8 z    3 z    z     11 z    24 z    6 z    6 z
>   ----- - ----- - ----- - ---- + ---- + --- - ----- - ----- - ---- + ---- + 
      13      11      9       7      5     14     12      10      8      6
     a       a       a       a      a     a      a       a       a      a
 
       7      7       7      7      8       8      8      9      9
    4 z    7 z    10 z    7 z    5 z    11 z    6 z    2 z    2 z
>   ---- + ---- + ----- + ---- + ---- + ----- + ---- + ---- + ----
     13     11      9       7     12      10      8     11      9
    a      a       a       a     a       a       a     a       a
In[19]:=
{Vassiliev[2][Knot[10, 101]], Vassiliev[3][Knot[10, 101]]}
Out[19]=   
{7, 17}
In[20]:=
Kh[Knot[10, 101]][q, t]
Out[20]=   
 3    5      5        7  2      9  2      9  3      11  3      11  4
q  + q  + 3 q  t + 4 q  t  + 3 q  t  + 6 q  t  + 4 q   t  + 8 q   t  + 
 
       13  4      13  5      15  5      15  6      17  6      17  7
>   6 q   t  + 6 q   t  + 8 q   t  + 7 q   t  + 6 q   t  + 4 q   t  + 
 
       19  7      19  8      21  8    21  9      23  9    25  10
>   7 q   t  + 3 q   t  + 4 q   t  + q   t  + 3 q   t  + q   t
In[21]:=
ColouredJones[Knot[10, 101], 2][q]
Out[21]=   
 4      5      6      7       8       9       10       11       12       13
q  - 3 q  + 3 q  + 6 q  - 18 q  + 15 q  + 20 q   - 59 q   + 39 q   + 55 q   - 
 
         14       15        16        17       18        19        20      21
>   120 q   + 50 q   + 104 q   - 161 q   + 35 q   + 137 q   - 156 q   + 3 q   + 
 
         22        23       24        25       26       27       28       29
>   138 q   - 114 q   - 26 q   + 107 q   - 56 q   - 35 q   + 56 q   - 12 q   - 
 
        30       31    32      33    34
>   21 q   + 15 q   + q   - 4 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10101
10.100
10100
10.102
10102