© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10102Visit 10102's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10102's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X16,10,17,9 X10,3,11,4 X2,15,3,16 X14,5,15,6 X18,8,19,7 X4,11,5,12 X8,18,9,17 X20,14,1,13 X12,20,13,19 |
Gauss Code: | {1, -4, 3, -7, 5, -1, 6, -8, 2, -3, 7, -10, 9, -5, 4, -2, 8, -6, 10, -9} |
DT (Dowker-Thistlethwaite) Code: | 6 10 14 18 16 4 20 2 8 12 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 8t-2 - 16t-1 + 21 - 16t + 8t2 - 2t3 |
Conway Polynomial: | 1 - 2z2 - 4z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {73, 0} |
Jones Polynomial: | q-4 - 3q-3 + 6q-2 - 9q-1 + 12 - 12q + 11q2 - 9q3 + 6q4 - 3q5 + q6 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-12 - q-10 + q-8 + q-6 - 2q-4 + 3q-2 - 1 + q2 - 2q6 + 2q8 - 2q10 + q12 + q14 - q16 + q18 |
HOMFLY-PT Polynomial: | a-4 + 2a-4z2 + a-4z4 - a-2 - 3a-2z2 - 3a-2z4 - a-2z6 - 3z2 - 3z4 - z6 + a2 + 2a2z2 + a2z4 |
Kauffman Polynomial: | 2a-6z2 - 3a-6z4 + a-6z6 - 2a-5z + 7a-5z3 - 9a-5z5 + 3a-5z7 + a-4 - 4a-4z2 + 8a-4z4 - 11a-4z6 + 4a-4z8 - 4a-3z + 13a-3z3 - 14a-3z5 + a-3z7 + 2a-3z9 + a-2 - 8a-2z2 + 21a-2z4 - 24a-2z6 + 9a-2z8 - 4a-1z + 16a-1z3 - 17a-1z5 + 4a-1z7 + 2a-1z9 + 2z2 + 3z4 - 7z6 + 5z8 - 2az + 7az3 - 9az5 + 6az7 - a2 + 3a2z2 - 6a2z4 + 5a2z6 - 3a3z3 + 3a3z5 - a4z2 + a4z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-2, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10102. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-12 - 3q-11 + 2q-10 + 6q-9 - 15q-8 + 10q-7 + 18q-6 - 45q-5 + 24q-4 + 46q-3 - 87q-2 + 28q-1 + 83 - 113q + 15q2 + 104q3 - 106q4 - 7q5 + 101q6 - 74q7 - 26q8 + 76q9 - 34q10 - 29q11 + 39q12 - 6q13 - 16q14 + 10q15 + q16 - 3q17 + q18 |
3 | q-24 - 3q-23 + 2q-22 + 2q-21 - 7q-19 + 4q-18 + 9q-17 - 11q-16 - 12q-15 + 28q-14 + 19q-13 - 58q-12 - 42q-11 + 109q-10 + 82q-9 - 162q-8 - 158q-7 + 214q-6 + 254q-5 - 240q-4 - 368q-3 + 247q-2 + 460q-1 - 205 - 548q + 162q2 + 585q3 - 88q4 - 602q5 + 18q6 + 582q7 + 60q8 - 542q9 - 135q10 + 481q11 + 201q12 - 399q13 - 254q14 + 302q15 + 284q16 - 197q17 - 284q18 + 99q19 + 249q20 - 17q21 - 191q22 - 37q23 + 129q24 + 52q25 - 67q26 - 49q27 + 28q28 + 32q29 - 8q30 - 16q31 + 2q32 + 5q33 + q34 - 3q35 + q36 |
4 | q-40 - 3q-39 + 2q-38 + 2q-37 - 4q-36 + 8q-35 - 13q-34 + 6q-33 + 4q-32 - 16q-31 + 40q-30 - 29q-29 + 6q-28 - 19q-27 - 65q-26 + 132q-25 + 16q-24 + 40q-23 - 140q-22 - 298q-21 + 243q-20 + 273q-19 + 348q-18 - 305q-17 - 977q-16 + 25q-15 + 686q-14 + 1279q-13 - 68q-12 - 1992q-11 - 922q-10 + 693q-9 + 2632q-8 + 975q-7 - 2639q-6 - 2287q-5 - 109q-4 + 3579q-3 + 2403q-2 - 2436q-1 - 3215 - 1318q + 3638q2 + 3418q3 - 1678q4 - 3336q5 - 2276q6 + 3059q7 + 3738q8 - 816q9 - 2887q10 - 2832q11 + 2177q12 + 3579q13 + 65q14 - 2115q15 - 3118q16 + 1059q17 + 3045q18 + 958q19 - 1021q20 - 3039q21 - 186q22 + 2032q23 + 1529q24 + 255q25 - 2312q26 - 1081q27 + 675q28 + 1348q29 + 1159q30 - 1079q31 - 1125q32 - 372q33 + 549q34 + 1182q35 - 60q36 - 510q37 - 595q38 - 122q39 + 603q40 + 234q41 + 9q42 - 283q43 - 239q44 + 135q45 + 101q46 + 103q47 - 42q48 - 98q49 + 8q50 + 4q51 + 35q52 + 4q53 - 19q54 + 2q55 - 3q56 + 5q57 + q58 - 3q59 + q60 |
5 | q-60 - 3q-59 + 2q-58 + 2q-57 - 4q-56 + 4q-55 + 2q-54 - 11q-53 + q-52 + 10q-51 - 3q-50 + 13q-49 + 8q-48 - 40q-47 - 32q-46 + 13q-45 + 50q-44 + 84q-43 + 41q-42 - 124q-41 - 225q-40 - 109q-39 + 187q-38 + 459q-37 + 370q-36 - 207q-35 - 875q-34 - 923q-33 + 42q-32 + 1431q-31 + 1934q-30 + 586q-29 - 1961q-28 - 3534q-27 - 2047q-26 + 2170q-25 + 5657q-24 + 4561q-23 - 1488q-22 - 7902q-21 - 8329q-20 - 549q-19 + 9782q-18 + 12919q-17 + 4184q-16 - 10441q-15 - 17801q-14 - 9293q-13 + 9535q-12 + 22028q-11 + 15224q-10 - 6866q-9 - 24932q-8 - 21127q-7 + 2937q-6 + 25991q-5 + 26177q-4 + 1714q-3 - 25525q-2 - 29716q-1 - 6124 + 23621q + 31695q2 + 10011q3 - 21220q4 - 32257q5 - 12795q6 + 18420q7 + 31811q8 + 14891q9 - 15790q10 - 30781q11 - 16275q12 + 13141q13 + 29344q14 + 17472q15 - 10427q16 - 27651q17 - 18533q18 + 7395q19 + 25525q20 + 19550q21 - 3923q22 - 22779q23 - 20330q24 + 44q25 + 19230q26 + 20514q27 + 4003q28 - 14815q29 - 19725q30 - 7753q31 + 9687q32 + 17699q33 + 10632q34 - 4326q35 - 14368q36 - 12077q37 - 659q38 + 10028q39 + 11851q40 + 4510q41 - 5332q42 - 9976q43 - 6689q44 + 1015q45 + 6977q46 + 7099q47 + 2126q48 - 3646q49 - 5956q50 - 3730q51 + 714q52 + 3977q53 + 3922q54 + 1146q55 - 1897q56 - 3045q57 - 1920q58 + 283q59 + 1853q60 + 1791q61 + 550q62 - 757q63 - 1232q64 - 758q65 + 82q66 + 637q67 + 605q68 + 179q69 - 235q70 - 335q71 - 192q72 + 17q73 + 157q74 + 128q75 + 16q76 - 50q77 - 45q78 - 30q79 + 8q80 + 30q81 + 6q82 - 7q83 - q84 - 3q85 - 3q86 + 5q87 + q88 - 3q89 + q90 |
6 | q-84 - 3q-83 + 2q-82 + 2q-81 - 4q-80 + 4q-79 - 2q-78 + 4q-77 - 16q-76 + 7q-75 + 23q-74 - 19q-73 + 11q-72 - 8q-71 - 4q-70 - 60q-69 + 22q-68 + 110q-67 - 11q-66 + 27q-65 - 52q-64 - 102q-63 - 239q-62 + 51q-61 + 411q-60 + 215q-59 + 202q-58 - 191q-57 - 619q-56 - 1038q-55 - 185q-54 + 1212q-53 + 1457q-52 + 1504q-51 + 28q-50 - 2246q-49 - 4221q-48 - 2636q-47 + 1824q-46 + 5249q-45 + 7427q-44 + 4221q-43 - 3840q-42 - 12778q-41 - 13618q-40 - 3983q-39 + 9688q-38 + 22982q-37 + 22655q-36 + 4683q-35 - 23473q-34 - 40384q-33 - 31353q-32 - 315q-31 + 42586q-30 + 64186q-29 + 43494q-28 - 15256q-27 - 73297q-26 - 89136q-25 - 49053q-24 + 38645q-23 + 113070q-22 + 118814q-21 + 38491q-20 - 78103q-19 - 153672q-18 - 137253q-17 - 15560q-16 + 129097q-15 + 198022q-14 + 131162q-13 - 30045q-12 - 180644q-11 - 224132q-10 - 105680q-9 + 91357q-8 + 235317q-7 + 216685q-6 + 49941q-5 - 154497q-4 - 265980q-3 - 184231q-2 + 25412q-1 + 221314 + 257165q + 116818q2 - 103337q3 - 260122q4 - 221404q5 - 28946q6 + 184503q7 + 256463q8 + 149756q9 - 60229q10 - 234155q11 - 226308q12 - 59247q13 + 150885q14 + 240301q15 + 161460q16 - 30735q17 - 207773q18 - 221925q19 - 80040q20 + 120894q21 + 222886q22 + 171609q23 + 117q24 - 177844q25 - 217422q26 - 107233q27 + 80015q28 + 197880q29 + 184290q30 + 44450q31 - 130123q32 - 202709q33 - 139593q34 + 19514q35 + 150009q36 + 184571q37 + 95729q38 - 58160q39 - 160004q40 - 156602q41 - 48988q42 + 73937q43 + 151189q44 + 127695q45 + 21804q46 - 84650q47 - 133650q48 - 93783q49 - 9705q50 + 80747q51 + 113490q52 + 73356q53 - 2028q54 - 70063q55 - 87335q56 - 60852q57 + 3884q58 + 56932q59 + 70330q60 + 45337q61 - 1927q62 - 39274q63 - 56952q64 - 36130q65 - 1052q66 + 28989q67 + 40296q68 + 29024q69 + 6473q70 - 20834q71 - 28992q72 - 22897q73 - 6186q74 + 10828q75 + 20077q76 + 19052q77 + 5394q78 - 5607q79 - 13210q80 - 12597q81 - 6422q82 + 2364q83 + 9048q84 + 7925q85 + 4951q86 - 654q87 - 4408q88 - 5774q89 - 3476q90 + 358q91 + 2014q92 + 3217q93 + 2130q94 + 541q95 - 1349q96 - 1696q97 - 950q98 - 475q99 + 506q100 + 764q101 + 714q102 + 66q103 - 224q104 - 221q105 - 318q106 - 79q107 + 62q108 + 184q109 + 50q110 + 7q111 + 12q112 - 59q113 - 30q114 - 11q115 + 33q116 + q117 - 5q118 + 11q119 - 6q120 - 3q121 - 3q122 + 5q123 + q124 - 3q125 + q126 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 102]] |
Out[2]= | PD[X[6, 2, 7, 1], X[16, 10, 17, 9], X[10, 3, 11, 4], X[2, 15, 3, 16], > X[14, 5, 15, 6], X[18, 8, 19, 7], X[4, 11, 5, 12], X[8, 18, 9, 17], > X[20, 14, 1, 13], X[12, 20, 13, 19]] |
In[3]:= | GaussCode[Knot[10, 102]] |
Out[3]= | GaussCode[1, -4, 3, -7, 5, -1, 6, -8, 2, -3, 7, -10, 9, -5, 4, -2, 8, -6, 10, > -9] |
In[4]:= | DTCode[Knot[10, 102]] |
Out[4]= | DTCode[6, 10, 14, 18, 16, 4, 20, 2, 8, 12] |
In[5]:= | br = BR[Knot[10, 102]] |
Out[5]= | BR[4, {-1, -1, 2, -1, -3, 2, -1, 2, 2, 3, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 102]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 102]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 102]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 102]][t] |
Out[10]= | 2 8 16 2 3 21 - -- + -- - -- - 16 t + 8 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 102]][z] |
Out[11]= | 2 4 6 1 - 2 z - 4 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 102]} |
In[13]:= | {KnotDet[Knot[10, 102]], KnotSignature[Knot[10, 102]]} |
Out[13]= | {73, 0} |
In[14]:= | Jones[Knot[10, 102]][q] |
Out[14]= | -4 3 6 9 2 3 4 5 6 12 + q - -- + -- - - - 12 q + 11 q - 9 q + 6 q - 3 q + q 3 2 q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 102]} |
In[16]:= | A2Invariant[Knot[10, 102]][q] |
Out[16]= | -12 -10 -8 -6 2 3 2 6 8 10 12 14 -1 + q - q + q + q - -- + -- + q - 2 q + 2 q - 2 q + q + q - 4 2 q q 16 18 > q + q |
In[17]:= | HOMFLYPT[Knot[10, 102]][a, z] |
Out[17]= | 2 2 4 4 -4 -2 2 2 2 z 3 z 2 2 4 z 3 z 2 4 6 a - a + a - 3 z + ---- - ---- + 2 a z - 3 z + -- - ---- + a z - z - 4 2 4 2 a a a a 6 z > -- 2 a |
In[18]:= | Kauffman[Knot[10, 102]][a, z] |
Out[18]= | 2 2 2 -4 -2 2 2 z 4 z 4 z 2 2 z 4 z 8 z a + a - a - --- - --- - --- - 2 a z + 2 z + ---- - ---- - ---- + 5 3 a 6 4 2 a a a a a 3 3 3 4 2 2 4 2 7 z 13 z 16 z 3 3 3 4 3 z > 3 a z - a z + ---- + ----- + ----- + 7 a z - 3 a z + 3 z - ---- + 5 3 a 6 a a a 4 4 5 5 5 8 z 21 z 2 4 4 4 9 z 14 z 17 z 5 3 5 > ---- + ----- - 6 a z + a z - ---- - ----- - ----- - 9 a z + 3 a z - 4 2 5 3 a a a a a 6 6 6 7 7 7 6 z 11 z 24 z 2 6 3 z z 4 z 7 8 > 7 z + -- - ----- - ----- + 5 a z + ---- + -- + ---- + 6 a z + 5 z + 6 4 2 5 3 a a a a a a 8 8 9 9 4 z 9 z 2 z 2 z > ---- + ---- + ---- + ---- 4 2 3 a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 102]], Vassiliev[3][Knot[10, 102]]} |
Out[19]= | {-2, -1} |
In[20]:= | Kh[Knot[10, 102]][q, t] |
Out[20]= | 7 1 2 1 4 2 5 4 3 - + 6 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 6 q t + 6 q t + q 9 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t 3 2 5 2 5 3 7 3 7 4 9 4 9 5 > 5 q t + 6 q t + 4 q t + 5 q t + 2 q t + 4 q t + q t + 11 5 13 6 > 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 102], 2][q] |
Out[21]= | -12 3 2 6 15 10 18 45 24 46 87 28 83 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - -- + -- - 113 q + 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q 2 3 4 5 6 7 8 9 10 > 15 q + 104 q - 106 q - 7 q + 101 q - 74 q - 26 q + 76 q - 34 q - 11 12 13 14 15 16 17 18 > 29 q + 39 q - 6 q - 16 q + 10 q + q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10102 |
|