© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.102
10102
10.104
10104
    10.103
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 10103   

Visit 10103's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10103's page at Knotilus!

Acknowledgement

10.103
KnotPlot

PD Presentation: X6271 X18,6,19,5 X20,13,1,14 X16,7,17,8 X10,3,11,4 X4,11,5,12 X14,9,15,10 X8,15,9,16 X12,19,13,20 X2,18,3,17

Gauss Code: {1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10, -2, 9, -3}

DT (Dowker-Thistlethwaite) Code: 6 10 18 16 14 4 20 8 2 12

Minimum Braid Representative:


Length is 11, width is 4
Braid index is 4

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 3 3 3 / NotAvailable 2

Alexander Polynomial: 2t-3 - 8t-2 + 17t-1 - 21 + 17t - 8t2 + 2t3

Conway Polynomial: 1 + 3z2 + 4z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {1040, ...}

Determinant and Signature: {75, -2}

Jones Polynomial: - q-8 + 3q-7 - 6q-6 + 9q-5 - 12q-4 + 13q-3 - 11q-2 + 10q-1 - 6 + 3q - q2

Other knots (up to mirrors) with the same Jones Polynomial: {1040, ...}

A2 (sl(3)) Invariant: - q-24 + q-22 - q-20 - q-18 + 2q-16 - 3q-14 + q-12 + q-8 + 4q-6 - q-4 + 3q-2 - 1 - q2 + q4 - q6

HOMFLY-PT Polynomial: - 1 - 2z2 - z4 + 3a2 + 4a2z2 + 3a2z4 + a2z6 + 3a4z2 + 3a4z4 + a4z6 - a6 - 2a6z2 - a6z4

Kauffman Polynomial: a-1z - 2a-1z3 + a-1z5 - 1 + 3z2 - 6z4 + 3z6 + az - 2az3 - 5az5 + 4az7 - 3a2 + 2a2z2 - 5a2z6 + 4a2z8 - 2a3z + 9a3z3 - 9a3z5 + 2a3z7 + 2a3z9 - 8a4z2 + 25a4z4 - 23a4z6 + 9a4z8 - 6a5z + 21a5z3 - 16a5z5 + 3a5z7 + 2a5z9 + a6 - 6a6z2 + 13a6z4 - 12a6z6 + 5a6z8 - 4a7z + 10a7z3 - 12a7z5 + 5a7z7 + a8z2 - 6a8z4 + 3a8z6 - 2a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, -4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10103. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 5          1
j = 3         2 
j = 1        41 
j = -1       62  
j = -3      65   
j = -5     75    
j = -7    56     
j = -9   47      
j = -11  25       
j = -13 14        
j = -15 2         
j = -171          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-23 - 3q-22 + 2q-21 + 7q-20 - 17q-19 + 6q-18 + 30q-17 - 46q-16 - 3q-15 + 75q-14 - 72q-13 - 30q-12 + 122q-11 - 81q-10 - 61q-9 + 141q-8 - 67q-7 - 75q-6 + 123q-5 - 35q-4 - 69q-3 + 78q-2 - 7q-1 - 44 + 32q + 3q2 - 16q3 + 8q4 + q5 - 3q6 + q7
3 - q-45 + 3q-44 - 2q-43 - 3q-42 + 2q-41 + 10q-40 - 8q-39 - 22q-38 + 15q-37 + 49q-36 - 20q-35 - 91q-34 + 4q-33 + 155q-32 + 35q-31 - 218q-30 - 115q-29 + 273q-28 + 225q-27 - 301q-26 - 355q-25 + 299q-24 + 482q-23 - 262q-22 - 602q-21 + 212q-20 + 688q-19 - 145q-18 - 739q-17 + 65q-16 + 769q-15 - q-14 - 742q-13 - 90q-12 + 705q-11 + 147q-10 - 603q-9 - 224q-8 + 505q-7 + 249q-6 - 362q-5 - 268q-4 + 247q-3 + 232q-2 - 129q-1 - 190 + 58q + 130q2 - 17q3 - 76q4 + 40q6 + 2q7 - 20q8 + 10q10 - 2q11 - 3q12 - q13 + 3q14 - q15
4 q-74 - 3q-73 + 2q-72 + 3q-71 - 6q-70 + 5q-69 - 9q-68 + 14q-67 + 12q-66 - 39q-65 + 5q-64 - 20q-63 + 73q-62 + 74q-61 - 126q-60 - 77q-59 - 121q-58 + 216q-57 + 354q-56 - 124q-55 - 278q-54 - 592q-53 + 181q-52 + 908q-51 + 378q-50 - 198q-49 - 1493q-48 - 569q-47 + 1195q-46 + 1428q-45 + 794q-44 - 2182q-43 - 2028q-42 + 541q-41 + 2318q-40 + 2599q-39 - 1987q-38 - 3412q-37 - 908q-36 + 2426q-35 + 4375q-34 - 1071q-33 - 4093q-32 - 2375q-31 + 1887q-30 + 5474q-29 - 19q-28 - 4083q-27 - 3391q-26 + 1109q-25 + 5841q-24 + 902q-23 - 3591q-22 - 3945q-21 + 193q-20 + 5532q-19 + 1732q-18 - 2574q-17 - 4017q-16 - 909q-15 + 4453q-14 + 2315q-13 - 1064q-12 - 3361q-11 - 1864q-10 + 2680q-9 + 2211q-8 + 391q-7 - 1988q-6 - 2048q-5 + 904q-4 + 1331q-3 + 1017q-2 - 581q-1 - 1367 - 49q + 349q2 + 745q3 + 104q4 - 530q5 - 145q6 - 89q7 + 266q8 + 139q9 - 118q10 - 11q11 - 87q12 + 51q13 + 37q14 - 31q15 + 23q16 - 22q17 + 10q18 + 4q19 - 13q20 + 8q21 - 3q22 + 3q23 + q24 - 3q25 + q26
5 - q-110 + 3q-109 - 2q-108 - 3q-107 + 6q-106 - q-105 - 6q-104 + 3q-103 - 3q-102 - 2q-101 + 25q-100 + 12q-99 - 37q-98 - 41q-97 - 21q-96 + 36q-95 + 125q-94 + 109q-93 - 77q-92 - 266q-91 - 261q-90 + 5q-89 + 446q-88 + 640q-87 + 241q-86 - 581q-85 - 1195q-84 - 877q-83 + 431q-82 + 1817q-81 + 1989q-80 + 373q-79 - 2172q-78 - 3525q-77 - 2036q-76 + 1705q-75 + 4988q-74 + 4713q-73 + 105q-72 - 5816q-71 - 7946q-70 - 3476q-69 + 5126q-68 + 11063q-67 + 8308q-66 - 2526q-65 - 13171q-64 - 13857q-63 - 2099q-62 + 13533q-61 + 19270q-60 + 8232q-59 - 11847q-58 - 23661q-57 - 15075q-56 + 8385q-55 + 26442q-54 + 21653q-53 - 3652q-52 - 27508q-51 - 27347q-50 - 1485q-49 + 27167q-48 + 31610q-47 + 6436q-46 - 25775q-45 - 34576q-44 - 10754q-43 + 23911q-42 + 36397q-41 + 14232q-40 - 21810q-39 - 37280q-38 - 17184q-37 + 19581q-36 + 37727q-35 + 19591q-34 - 17209q-33 - 37381q-32 - 21994q-31 + 14253q-30 + 36701q-29 + 24132q-28 - 10731q-27 - 34797q-26 - 26227q-25 + 6247q-24 + 31996q-23 + 27591q-22 - 1273q-21 - 27448q-20 - 28061q-19 - 4042q-18 + 21869q-17 + 26814q-16 + 8685q-15 - 15026q-14 - 23999q-13 - 12153q-12 + 8337q-11 + 19434q-10 + 13593q-9 - 2144q-8 - 14015q-7 - 13154q-6 - 2221q-5 + 8472q-4 + 10896q-3 + 4744q-2 - 3775q-1 - 7834 - 5289q + 529q2 + 4662q3 + 4518q4 + 1184q5 - 2139q6 - 3127q7 - 1671q8 + 564q9 + 1756q10 + 1400q11 + 192q12 - 761q13 - 899q14 - 385q15 + 219q16 + 459q17 + 298q18 - q19 - 161q20 - 174q21 - 65q22 + 56q23 + 72q24 + 27q25 + 8q26 - 12q27 - 31q28 - 5q29 + 11q30 - 6q31 + 6q32 + 9q33 - 5q34 - 3q35 + 3q36 - 3q37 - q38 + 3q39 - q40


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 103]]
Out[2]=   
PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[16, 7, 17, 8], 
 
>   X[10, 3, 11, 4], X[4, 11, 5, 12], X[14, 9, 15, 10], X[8, 15, 9, 16], 
 
>   X[12, 19, 13, 20], X[2, 18, 3, 17]]
In[3]:=
GaussCode[Knot[10, 103]]
Out[3]=   
GaussCode[1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10, -2, 9, 
 
>   -3]
In[4]:=
DTCode[Knot[10, 103]]
Out[4]=   
DTCode[6, 10, 18, 16, 14, 4, 20, 8, 2, 12]
In[5]:=
br = BR[Knot[10, 103]]
Out[5]=   
BR[4, {-1, -1, -2, 1, 3, -2, -2, 3, -2, -2, 3}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{4, 11}
In[7]:=
BraidIndex[Knot[10, 103]]
Out[7]=   
4
In[8]:=
Show[DrawMorseLink[Knot[10, 103]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 103]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 3, 3, 3, NotAvailable, 2}
In[10]:=
alex = Alexander[Knot[10, 103]][t]
Out[10]=   
      2    8    17             2      3
-21 + -- - -- + -- + 17 t - 8 t  + 2 t
       3    2   t
      t    t
In[11]:=
Conway[Knot[10, 103]][z]
Out[11]=   
       2      4      6
1 + 3 z  + 4 z  + 2 z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 40], Knot[10, 103]}
In[13]:=
{KnotDet[Knot[10, 103]], KnotSignature[Knot[10, 103]]}
Out[13]=   
{75, -2}
In[14]:=
Jones[Knot[10, 103]][q]
Out[14]=   
      -8   3    6    9    12   13   11   10          2
-6 - q   + -- - -- + -- - -- + -- - -- + -- + 3 q - q
            7    6    5    4    3    2   q
           q    q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 40], Knot[10, 103]}
In[16]:=
A2Invariant[Knot[10, 103]][q]
Out[16]=   
      -24    -22    -20    -18    2     3     -12    -8   4     -4   3     2
-1 - q    + q    - q    - q    + --- - --- + q    + q   + -- - q   + -- - q  + 
                                  16    14                 6          2
                                 q     q                  q          q
 
     4    6
>   q  - q
In[17]:=
HOMFLYPT[Knot[10, 103]][a, z]
Out[17]=   
        2    6      2      2  2      4  2      6  2    4      2  4      4  4
-1 + 3 a  - a  - 2 z  + 4 a  z  + 3 a  z  - 2 a  z  - z  + 3 a  z  + 3 a  z  - 
 
     6  4    2  6    4  6
>   a  z  + a  z  + a  z
In[18]:=
Kauffman[Knot[10, 103]][a, z]
Out[18]=   
        2    6   z            3        5        7        2      2  2
-1 - 3 a  + a  + - + a z - 2 a  z - 6 a  z - 4 a  z + 3 z  + 2 a  z  - 
                 a
 
                                   3
       4  2      6  2    8  2   2 z         3      3  3       5  3       7  3
>   8 a  z  - 6 a  z  + a  z  - ---- - 2 a z  + 9 a  z  + 21 a  z  + 10 a  z  - 
                                 a
 
                                                      5
       9  3      4       4  4       6  4      8  4   z         5      3  5
>   2 a  z  - 6 z  + 25 a  z  + 13 a  z  - 6 a  z  + -- - 5 a z  - 9 a  z  - 
                                                     a
 
        5  5       7  5    9  5      6      2  6       4  6       6  6
>   16 a  z  - 12 a  z  + a  z  + 3 z  - 5 a  z  - 23 a  z  - 12 a  z  + 
 
       8  6        7      3  7      5  7      7  7      2  8      4  8
>   3 a  z  + 4 a z  + 2 a  z  + 3 a  z  + 5 a  z  + 4 a  z  + 9 a  z  + 
 
       6  8      3  9      5  9
>   5 a  z  + 2 a  z  + 2 a  z
In[19]:=
{Vassiliev[2][Knot[10, 103]], Vassiliev[3][Knot[10, 103]]}
Out[19]=   
{3, -4}
In[20]:=
Kh[Knot[10, 103]][q, t]
Out[20]=   
5    6     1        2        1        4        2        5        4       7
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q        q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      5       6       7      5      6     2 t              2      3  2    5  3
>   ----- + ----- + ----- + ---- + ---- + --- + 4 q t + q t  + 2 q  t  + q  t
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
In[21]:=
ColouredJones[Knot[10, 103], 2][q]
Out[21]=   
       -23    3     2     7    17     6    30    46     3    75    72    30
-44 + q    - --- + --- + --- - --- + --- + --- - --- - --- + --- - --- - --- + 
              22    21    20    19    18    17    16    15    14    13    12
             q     q     q     q     q     q     q     q     q     q     q
 
    122   81    61   141   67   75   123   35   69   78   7             2
>   --- - --- - -- + --- - -- - -- + --- - -- - -- + -- - - + 32 q + 3 q  - 
     11    10    9    8     7    6    5     4    3    2   q
    q     q     q    q     q    q    q     q    q    q
 
        3      4    5      6    7
>   16 q  + 8 q  + q  - 3 q  + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10103
10.102
10102
10.104
10104