© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10103Visit 10103's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10103's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X18,6,19,5 X20,13,1,14 X16,7,17,8 X10,3,11,4 X4,11,5,12 X14,9,15,10 X8,15,9,16 X12,19,13,20 X2,18,3,17 |
Gauss Code: | {1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10, -2, 9, -3} |
DT (Dowker-Thistlethwaite) Code: | 6 10 18 16 14 4 20 8 2 12 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 8t-2 + 17t-1 - 21 + 17t - 8t2 + 2t3 |
Conway Polynomial: | 1 + 3z2 + 4z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {1040, ...} |
Determinant and Signature: | {75, -2} |
Jones Polynomial: | - q-8 + 3q-7 - 6q-6 + 9q-5 - 12q-4 + 13q-3 - 11q-2 + 10q-1 - 6 + 3q - q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {1040, ...} |
A2 (sl(3)) Invariant: | - q-24 + q-22 - q-20 - q-18 + 2q-16 - 3q-14 + q-12 + q-8 + 4q-6 - q-4 + 3q-2 - 1 - q2 + q4 - q6 |
HOMFLY-PT Polynomial: | - 1 - 2z2 - z4 + 3a2 + 4a2z2 + 3a2z4 + a2z6 + 3a4z2 + 3a4z4 + a4z6 - a6 - 2a6z2 - a6z4 |
Kauffman Polynomial: | a-1z - 2a-1z3 + a-1z5 - 1 + 3z2 - 6z4 + 3z6 + az - 2az3 - 5az5 + 4az7 - 3a2 + 2a2z2 - 5a2z6 + 4a2z8 - 2a3z + 9a3z3 - 9a3z5 + 2a3z7 + 2a3z9 - 8a4z2 + 25a4z4 - 23a4z6 + 9a4z8 - 6a5z + 21a5z3 - 16a5z5 + 3a5z7 + 2a5z9 + a6 - 6a6z2 + 13a6z4 - 12a6z6 + 5a6z8 - 4a7z + 10a7z3 - 12a7z5 + 5a7z7 + a8z2 - 6a8z4 + 3a8z6 - 2a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, -4} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10103. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - 3q-22 + 2q-21 + 7q-20 - 17q-19 + 6q-18 + 30q-17 - 46q-16 - 3q-15 + 75q-14 - 72q-13 - 30q-12 + 122q-11 - 81q-10 - 61q-9 + 141q-8 - 67q-7 - 75q-6 + 123q-5 - 35q-4 - 69q-3 + 78q-2 - 7q-1 - 44 + 32q + 3q2 - 16q3 + 8q4 + q5 - 3q6 + q7 |
3 | - q-45 + 3q-44 - 2q-43 - 3q-42 + 2q-41 + 10q-40 - 8q-39 - 22q-38 + 15q-37 + 49q-36 - 20q-35 - 91q-34 + 4q-33 + 155q-32 + 35q-31 - 218q-30 - 115q-29 + 273q-28 + 225q-27 - 301q-26 - 355q-25 + 299q-24 + 482q-23 - 262q-22 - 602q-21 + 212q-20 + 688q-19 - 145q-18 - 739q-17 + 65q-16 + 769q-15 - q-14 - 742q-13 - 90q-12 + 705q-11 + 147q-10 - 603q-9 - 224q-8 + 505q-7 + 249q-6 - 362q-5 - 268q-4 + 247q-3 + 232q-2 - 129q-1 - 190 + 58q + 130q2 - 17q3 - 76q4 + 40q6 + 2q7 - 20q8 + 10q10 - 2q11 - 3q12 - q13 + 3q14 - q15 |
4 | q-74 - 3q-73 + 2q-72 + 3q-71 - 6q-70 + 5q-69 - 9q-68 + 14q-67 + 12q-66 - 39q-65 + 5q-64 - 20q-63 + 73q-62 + 74q-61 - 126q-60 - 77q-59 - 121q-58 + 216q-57 + 354q-56 - 124q-55 - 278q-54 - 592q-53 + 181q-52 + 908q-51 + 378q-50 - 198q-49 - 1493q-48 - 569q-47 + 1195q-46 + 1428q-45 + 794q-44 - 2182q-43 - 2028q-42 + 541q-41 + 2318q-40 + 2599q-39 - 1987q-38 - 3412q-37 - 908q-36 + 2426q-35 + 4375q-34 - 1071q-33 - 4093q-32 - 2375q-31 + 1887q-30 + 5474q-29 - 19q-28 - 4083q-27 - 3391q-26 + 1109q-25 + 5841q-24 + 902q-23 - 3591q-22 - 3945q-21 + 193q-20 + 5532q-19 + 1732q-18 - 2574q-17 - 4017q-16 - 909q-15 + 4453q-14 + 2315q-13 - 1064q-12 - 3361q-11 - 1864q-10 + 2680q-9 + 2211q-8 + 391q-7 - 1988q-6 - 2048q-5 + 904q-4 + 1331q-3 + 1017q-2 - 581q-1 - 1367 - 49q + 349q2 + 745q3 + 104q4 - 530q5 - 145q6 - 89q7 + 266q8 + 139q9 - 118q10 - 11q11 - 87q12 + 51q13 + 37q14 - 31q15 + 23q16 - 22q17 + 10q18 + 4q19 - 13q20 + 8q21 - 3q22 + 3q23 + q24 - 3q25 + q26 |
5 | - q-110 + 3q-109 - 2q-108 - 3q-107 + 6q-106 - q-105 - 6q-104 + 3q-103 - 3q-102 - 2q-101 + 25q-100 + 12q-99 - 37q-98 - 41q-97 - 21q-96 + 36q-95 + 125q-94 + 109q-93 - 77q-92 - 266q-91 - 261q-90 + 5q-89 + 446q-88 + 640q-87 + 241q-86 - 581q-85 - 1195q-84 - 877q-83 + 431q-82 + 1817q-81 + 1989q-80 + 373q-79 - 2172q-78 - 3525q-77 - 2036q-76 + 1705q-75 + 4988q-74 + 4713q-73 + 105q-72 - 5816q-71 - 7946q-70 - 3476q-69 + 5126q-68 + 11063q-67 + 8308q-66 - 2526q-65 - 13171q-64 - 13857q-63 - 2099q-62 + 13533q-61 + 19270q-60 + 8232q-59 - 11847q-58 - 23661q-57 - 15075q-56 + 8385q-55 + 26442q-54 + 21653q-53 - 3652q-52 - 27508q-51 - 27347q-50 - 1485q-49 + 27167q-48 + 31610q-47 + 6436q-46 - 25775q-45 - 34576q-44 - 10754q-43 + 23911q-42 + 36397q-41 + 14232q-40 - 21810q-39 - 37280q-38 - 17184q-37 + 19581q-36 + 37727q-35 + 19591q-34 - 17209q-33 - 37381q-32 - 21994q-31 + 14253q-30 + 36701q-29 + 24132q-28 - 10731q-27 - 34797q-26 - 26227q-25 + 6247q-24 + 31996q-23 + 27591q-22 - 1273q-21 - 27448q-20 - 28061q-19 - 4042q-18 + 21869q-17 + 26814q-16 + 8685q-15 - 15026q-14 - 23999q-13 - 12153q-12 + 8337q-11 + 19434q-10 + 13593q-9 - 2144q-8 - 14015q-7 - 13154q-6 - 2221q-5 + 8472q-4 + 10896q-3 + 4744q-2 - 3775q-1 - 7834 - 5289q + 529q2 + 4662q3 + 4518q4 + 1184q5 - 2139q6 - 3127q7 - 1671q8 + 564q9 + 1756q10 + 1400q11 + 192q12 - 761q13 - 899q14 - 385q15 + 219q16 + 459q17 + 298q18 - q19 - 161q20 - 174q21 - 65q22 + 56q23 + 72q24 + 27q25 + 8q26 - 12q27 - 31q28 - 5q29 + 11q30 - 6q31 + 6q32 + 9q33 - 5q34 - 3q35 + 3q36 - 3q37 - q38 + 3q39 - q40 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 103]] |
Out[2]= | PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[16, 7, 17, 8], > X[10, 3, 11, 4], X[4, 11, 5, 12], X[14, 9, 15, 10], X[8, 15, 9, 16], > X[12, 19, 13, 20], X[2, 18, 3, 17]] |
In[3]:= | GaussCode[Knot[10, 103]] |
Out[3]= | GaussCode[1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10, -2, 9, > -3] |
In[4]:= | DTCode[Knot[10, 103]] |
Out[4]= | DTCode[6, 10, 18, 16, 14, 4, 20, 8, 2, 12] |
In[5]:= | br = BR[Knot[10, 103]] |
Out[5]= | BR[4, {-1, -1, -2, 1, 3, -2, -2, 3, -2, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 103]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 103]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 103]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 3, 3, 3, NotAvailable, 2} |
In[10]:= | alex = Alexander[Knot[10, 103]][t] |
Out[10]= | 2 8 17 2 3 -21 + -- - -- + -- + 17 t - 8 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 103]][z] |
Out[11]= | 2 4 6 1 + 3 z + 4 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 40], Knot[10, 103]} |
In[13]:= | {KnotDet[Knot[10, 103]], KnotSignature[Knot[10, 103]]} |
Out[13]= | {75, -2} |
In[14]:= | Jones[Knot[10, 103]][q] |
Out[14]= | -8 3 6 9 12 13 11 10 2 -6 - q + -- - -- + -- - -- + -- - -- + -- + 3 q - q 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 40], Knot[10, 103]} |
In[16]:= | A2Invariant[Knot[10, 103]][q] |
Out[16]= | -24 -22 -20 -18 2 3 -12 -8 4 -4 3 2 -1 - q + q - q - q + --- - --- + q + q + -- - q + -- - q + 16 14 6 2 q q q q 4 6 > q - q |
In[17]:= | HOMFLYPT[Knot[10, 103]][a, z] |
Out[17]= | 2 6 2 2 2 4 2 6 2 4 2 4 4 4 -1 + 3 a - a - 2 z + 4 a z + 3 a z - 2 a z - z + 3 a z + 3 a z - 6 4 2 6 4 6 > a z + a z + a z |
In[18]:= | Kauffman[Knot[10, 103]][a, z] |
Out[18]= | 2 6 z 3 5 7 2 2 2 -1 - 3 a + a + - + a z - 2 a z - 6 a z - 4 a z + 3 z + 2 a z - a 3 4 2 6 2 8 2 2 z 3 3 3 5 3 7 3 > 8 a z - 6 a z + a z - ---- - 2 a z + 9 a z + 21 a z + 10 a z - a 5 9 3 4 4 4 6 4 8 4 z 5 3 5 > 2 a z - 6 z + 25 a z + 13 a z - 6 a z + -- - 5 a z - 9 a z - a 5 5 7 5 9 5 6 2 6 4 6 6 6 > 16 a z - 12 a z + a z + 3 z - 5 a z - 23 a z - 12 a z + 8 6 7 3 7 5 7 7 7 2 8 4 8 > 3 a z + 4 a z + 2 a z + 3 a z + 5 a z + 4 a z + 9 a z + 6 8 3 9 5 9 > 5 a z + 2 a z + 2 a z |
In[19]:= | {Vassiliev[2][Knot[10, 103]], Vassiliev[3][Knot[10, 103]]} |
Out[19]= | {3, -4} |
In[20]:= | Kh[Knot[10, 103]][q, t] |
Out[20]= | 5 6 1 2 1 4 2 5 4 7 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 9 3 q q t q t q t q t q t q t q t q t 5 6 7 5 6 2 t 2 3 2 5 3 > ----- + ----- + ----- + ---- + ---- + --- + 4 q t + q t + 2 q t + q t 7 3 7 2 5 2 5 3 q q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 103], 2][q] |
Out[21]= | -23 3 2 7 17 6 30 46 3 75 72 30 -44 + q - --- + --- + --- - --- + --- + --- - --- - --- + --- - --- - --- + 22 21 20 19 18 17 16 15 14 13 12 q q q q q q q q q q q 122 81 61 141 67 75 123 35 69 78 7 2 > --- - --- - -- + --- - -- - -- + --- - -- - -- + -- - - + 32 q + 3 q - 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q 3 4 5 6 7 > 16 q + 8 q + q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10103 |
|