© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10104Visit 10104's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10104's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X16,4,17,3 X18,9,19,10 X14,7,15,8 X20,13,1,14 X8,17,9,18 X10,19,11,20 X12,6,13,5 X4,12,5,11 X2,16,3,15 |
Gauss Code: | {1, -10, 2, -9, 8, -1, 4, -6, 3, -7, 9, -8, 5, -4, 10, -2, 6, -3, 7, -5} |
DT (Dowker-Thistlethwaite) Code: | 6 16 12 14 18 4 20 2 8 10 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-4 - 4t-3 + 9t-2 - 15t-1 + 19 - 15t + 9t2 - 4t3 + t4 |
Conway Polynomial: | 1 + z2 + 5z4 + 4z6 + z8 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {77, 0} |
Jones Polynomial: | - q-5 + 3q-4 - 6q-3 + 10q-2 - 12q-1 + 13 - 12q + 10q2 - 6q3 + 3q4 - q5 |
Other knots (up to mirrors) with the same Jones Polynomial: | {1071, ...} |
A2 (sl(3)) Invariant: | - q-14 + q-12 - 2q-10 + 2q-8 + q-6 - q-4 + 3q-2 - 3 + 3q2 - q4 + q6 + 2q8 - 2q10 + q12 - q14 |
HOMFLY-PT Polynomial: | - a-2 - 5a-2z2 - 4a-2z4 - a-2z6 + 3 + 11z2 + 13z4 + 6z6 + z8 - a2 - 5a2z2 - 4a2z4 - a2z6 |
Kauffman Polynomial: | - 2a-5z3 + a-5z5 + 2a-4z2 - 6a-4z4 + 3a-4z6 - 2a-3z + 8a-3z3 - 11a-3z5 + 5a-3z7 + a-2 - 6a-2z2 + 12a-2z4 - 11a-2z6 + 5a-2z8 - 4a-1z + 13a-1z3 - 12a-1z5 + 3a-1z7 + 2a-1z9 + 3 - 15z2 + 27z4 - 22z6 + 9z8 - 2az + 4az3 - 6az5 + 2az7 + 2az9 + a2 - 4a2z2 + 3a2z4 - 5a2z6 + 4a2z8 + a3z - a3z3 - 5a3z5 + 4a3z7 + 3a4z2 - 6a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10104. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 3q-14 + q-13 + 8q-12 - 16q-11 + 3q-10 + 33q-9 - 46q-8 - 7q-7 + 83q-6 - 76q-5 - 37q-4 + 133q-3 - 84q-2 - 70q-1 + 154 - 68q - 86q2 + 134q3 - 36q4 - 78q5 + 84q6 - 5q7 - 49q8 + 33q9 + 6q10 - 18q11 + 7q12 + 2q13 - 3q14 + q15 |
3 | - q-30 + 3q-29 - q-28 - 3q-27 - 2q-26 + 10q-25 - 20q-23 + q-22 + 42q-21 + 2q-20 - 82q-19 - 20q-18 + 143q-17 + 65q-16 - 213q-15 - 147q-14 + 270q-13 + 277q-12 - 317q-11 - 414q-10 + 310q-9 + 571q-8 - 281q-7 - 700q-6 + 214q-5 + 809q-4 - 141q-3 - 867q-2 + 51q-1 + 894 + 32q - 872q2 - 122q3 + 819q4 + 196q5 - 717q6 - 268q7 + 594q8 + 307q9 - 438q10 - 328q11 + 297q12 + 293q13 - 156q14 - 244q15 + 63q16 + 173q17 - 8q18 - 104q19 - 15q20 + 55q21 + 14q22 - 25q23 - 8q24 + 11q25 + 2q26 - 3q27 - 2q28 + 3q29 - q30 |
4 | q-50 - 3q-49 + q-48 + 3q-47 - 3q-46 + 8q-45 - 13q-44 + 4q-43 + 10q-42 - 22q-41 + 24q-40 - 33q-39 + 35q-38 + 55q-37 - 83q-36 - 11q-35 - 135q-34 + 135q-33 + 295q-32 - 68q-31 - 159q-30 - 607q-29 + 84q-28 + 849q-27 + 452q-26 - 66q-25 - 1605q-24 - 712q-23 + 1223q-22 + 1648q-21 + 999q-20 - 2510q-19 - 2391q-18 + 599q-17 + 2809q-16 + 3073q-15 - 2457q-14 - 4122q-13 - 1034q-12 + 3109q-11 + 5234q-10 - 1459q-9 - 5061q-8 - 2818q-7 + 2562q-6 + 6625q-5 - 193q-4 - 5106q-3 - 4092q-2 + 1639q-1 + 7099 + 931q - 4519q2 - 4776q3 + 540q4 + 6757q5 + 1925q6 - 3339q7 - 4892q8 - 767q9 + 5538q10 + 2672q11 - 1581q12 - 4204q13 - 1976q14 + 3480q15 + 2700q16 + 226q17 - 2656q18 - 2382q19 + 1288q20 + 1785q21 + 1167q22 - 920q23 - 1726q24 - 32q25 + 583q26 + 989q27 + 62q28 - 728q29 - 261q30 - 60q31 + 410q32 + 197q33 - 163q34 - 83q35 - 117q36 + 91q37 + 72q38 - 28q39 + 3q40 - 38q41 + 15q42 + 14q43 - 10q44 + 5q45 - 6q46 + 3q47 + 2q48 - 3q49 + q50 |
5 | - q-75 + 3q-74 - q-73 - 3q-72 + 3q-71 - 3q-70 - 5q-69 + 9q-68 + 6q-67 - 6q-66 + 11q-65 - 5q-64 - 32q-63 - 10q-62 + 10q-61 + 23q-60 + 70q-59 + 55q-58 - 61q-57 - 163q-56 - 164q-55 - 21q-54 + 281q-53 + 476q-52 + 271q-51 - 349q-50 - 945q-49 - 890q-48 + 102q-47 + 1495q-46 + 2034q-45 + 792q-44 - 1803q-43 - 3652q-42 - 2658q-41 + 1267q-40 + 5374q-39 + 5695q-38 + 697q-37 - 6494q-36 - 9614q-35 - 4509q-34 + 6140q-33 + 13631q-32 + 10157q-31 - 3525q-30 - 16860q-29 - 17023q-28 - 1386q-27 + 18129q-26 + 24030q-25 + 8540q-24 - 17145q-23 - 30208q-22 - 16666q-21 + 13766q-20 + 34502q-19 + 25065q-18 - 8697q-17 - 36861q-16 - 32386q-15 + 2706q-14 + 37200q-13 + 38333q-12 + 3267q-11 - 36155q-10 - 42512q-9 - 8711q-8 + 34174q-7 + 45291q-6 + 13266q-5 - 31774q-4 - 46784q-3 - 17132q-2 + 29068q-1 + 47526 + 20413q - 26095q2 - 47429q3 - 23499q4 + 22493q5 + 46666q6 + 26441q7 - 18138q8 - 44748q9 - 29227q10 + 12732q11 + 41546q12 + 31418q13 - 6498q14 - 36589q15 - 32564q16 - 191q17 + 30076q18 + 31939q19 + 6459q20 - 22091q21 - 29398q22 - 11486q23 + 13819q24 + 24701q25 + 14355q26 - 5907q27 - 18664q28 - 14905q29 - 185q30 + 12099q31 + 13104q32 + 4158q33 - 6179q34 - 9957q35 - 5691q36 + 1767q37 + 6313q38 + 5369q39 + 855q40 - 3165q41 - 4015q42 - 1854q43 + 1034q44 + 2416q45 + 1768q46 + 95q47 - 1154q48 - 1238q49 - 446q50 + 397q51 + 687q52 + 398q53 - 67q54 - 289q55 - 251q56 - 47q57 + 123q58 + 119q59 + 22q60 - 25q61 - 37q62 - 33q63 + 14q64 + 24q65 - 5q66 - 3q67 + 4q68 - 6q69 - q70 + 6q71 - 3q72 - 2q73 + 3q74 - q75 |
6 | q-105 - 3q-104 + q-103 + 3q-102 - 3q-101 + 3q-100 + 9q-98 - 19q-97 - 10q-96 + 17q-95 - 13q-94 + 15q-93 + 19q-92 + 55q-91 - 51q-90 - 72q-89 + q-88 - 77q-87 + 18q-86 + 110q-85 + 292q-84 + 16q-83 - 169q-82 - 168q-81 - 501q-80 - 299q-79 + 166q-78 + 1075q-77 + 861q-76 + 375q-75 - 222q-74 - 1916q-73 - 2378q-72 - 1408q-71 + 1786q-70 + 3579q-69 + 4343q-68 + 3085q-67 - 2672q-66 - 7826q-65 - 9619q-64 - 3668q-63 + 4379q-62 + 13580q-61 + 17739q-60 + 7980q-59 - 9048q-58 - 25751q-57 - 26746q-56 - 13934q-55 + 14474q-54 + 42740q-53 + 44982q-52 + 18929q-51 - 27811q-50 - 61998q-49 - 68586q-48 - 26042q-47 + 45884q-46 + 96047q-45 + 93195q-44 + 24314q-43 - 66608q-42 - 138131q-41 - 121818q-40 - 17260q-39 + 108811q-38 + 181754q-37 + 138022q-36 + 4030q-35 - 162967q-34 - 230111q-33 - 144794q-32 + 42212q-31 + 221127q-30 + 261231q-29 + 137189q-28 - 108523q-27 - 286996q-26 - 277579q-25 - 81286q-24 + 184750q-23 + 332789q-22 + 270203q-21 - 4313q-20 - 273672q-19 - 359716q-18 - 200408q-17 + 105598q-16 + 340790q-15 + 354812q-14 + 93967q-13 - 222905q-12 - 385092q-11 - 276884q-10 + 30850q-9 + 315542q-8 + 390377q-7 + 158867q-6 - 172088q-5 - 380833q-4 - 315639q-3 - 22359q-2 + 285289q-1 + 401436 + 200275q - 129417q2 - 367677q3 - 339461q4 - 67949q5 + 251066q6 + 402942q7 + 239507q8 - 77759q9 - 340910q10 - 358439q11 - 125667q12 + 193064q13 + 384935q14 + 281535q15 + 743q16 - 278055q17 - 356551q18 - 194325q19 + 95656q20 + 321579q21 + 302526q22 + 97371q23 - 165941q24 - 303184q25 - 240500q26 - 23862q27 + 202106q28 + 265940q29 + 168175q30 - 30849q31 - 189632q32 - 222060q33 - 111824q34 + 61451q35 + 165780q36 + 167522q37 + 66062q38 - 58278q39 - 137731q40 - 122927q41 - 35000q42 + 50999q43 + 101148q44 + 83921q45 + 25482q46 - 42123q47 - 71828q48 - 54412q49 - 16452q50 + 27242q51 + 46398q52 + 39409q53 + 9192q54 - 17245q55 - 27807q56 - 25137q57 - 7749q58 + 8912q59 + 18860q60 + 14235q61 + 5092q62 - 3800q63 - 10515q64 - 9094q65 - 3795q66 + 3061q67 + 4964q68 + 4816q69 + 2585q70 - 1278q71 - 2915q72 - 2728q73 - 636q74 + 287q75 + 1246q76 + 1444q77 + 397q78 - 339q79 - 702q80 - 288q81 - 249q82 + 75q83 + 350q84 + 164q85 + 6q86 - 117q87 - 4q88 - 76q89 - 32q90 + 64q91 + 25q92 + 3q93 - 27q94 + 18q95 - 7q96 - 15q97 + 12q98 + 2q99 + q100 - 6q101 + 3q102 + 2q103 - 3q104 + q105 |
7 | - q-140 + 3q-139 - q-138 - 3q-137 + 3q-136 - 3q-135 - 4q-133 + q-132 + 23q-131 - q-130 - 15q-129 + 3q-128 - 19q-127 - 9q-126 - 26q-125 - 10q-124 + 104q-123 + 52q-122 - 6q-121 - 4q-120 - 96q-119 - 79q-118 - 152q-117 - 116q-116 + 276q-115 + 325q-114 + 262q-113 + 158q-112 - 287q-111 - 460q-110 - 800q-109 - 816q-108 + 293q-107 + 1116q-106 + 1776q-105 + 1796q-104 + 305q-103 - 1268q-102 - 3439q-101 - 4731q-100 - 2678q-99 + 883q-98 + 5832q-97 + 9575q-96 + 8249q-95 + 3149q-94 - 6682q-93 - 16983q-92 - 19937q-91 - 14353q-90 + 2286q-89 + 23892q-88 + 37772q-87 + 37795q-86 + 15943q-85 - 22473q-84 - 58416q-83 - 76629q-82 - 57380q-81 - 611q-80 + 69607q-79 + 125778q-78 + 128743q-77 + 63240q-76 - 49228q-75 - 168627q-74 - 226960q-73 - 178510q-72 - 29634q-71 + 173728q-70 + 329721q-69 + 345947q-68 + 191169q-67 - 100941q-66 - 396890q-65 - 542380q-64 - 440527q-63 - 84864q-62 + 375651q-61 + 718631q-60 + 754927q-59 + 399165q-58 - 216793q-57 - 811349q-56 - 1082708q-55 - 823276q-54 - 104316q-53 + 759909q-52 + 1350661q-51 + 1304139q-50 + 578157q-49 - 526603q-48 - 1489739q-47 - 1767730q-46 - 1154315q-45 + 114596q-44 + 1451632q-43 + 2134505q-42 + 1758761q-41 + 437263q-40 - 1226882q-39 - 2350485q-38 - 2311609q-37 - 1056474q-36 + 845475q-35 + 2390772q-34 + 2748218q-33 + 1668352q-32 - 364936q-31 - 2272868q-30 - 3036274q-29 - 2204755q-28 - 144474q-27 + 2037596q-26 + 3174791q-25 + 2626569q-24 + 622231q-23 - 1741650q-22 - 3190950q-21 - 2921481q-20 - 1026220q-19 + 1436714q-18 + 3124901q-17 + 3103245q-16 + 1339105q-15 - 1161189q-14 - 3018262q-13 - 3199562q-12 - 1565745q-11 + 933672q-10 + 2904738q-9 + 3244072q-8 + 1725179q-7 - 755930q-6 - 2803510q-5 - 3265298q-4 - 1844767q-3 + 613441q-2 + 2720250q-1 + 3285566 + 1951561q - 485486q2 - 2646880q3 - 3312851q4 - 2068490q5 + 344210q6 + 2565024q7 + 3346285q8 + 2210037q9 - 165925q10 - 2449564q11 - 3369639q12 - 2378474q13 - 70093q14 + 2271671q15 + 3358549q16 + 2562865q17 + 370991q18 - 2006306q19 - 3279440q20 - 2736128q21 - 729246q22 + 1637881q23 + 3098896q24 + 2859077q25 + 1116697q26 - 1169337q27 - 2790521q28 - 2886590q29 - 1487424q30 + 627580q31 + 2348100q32 + 2777646q33 + 1782232q34 - 62409q35 - 1790364q36 - 2511320q37 - 1946542q38 - 457096q39 + 1168781q40 + 2094478q41 + 1939263q42 + 861955q43 - 552151q44 - 1570252q45 - 1756628q46 - 1098365q47 + 21565q48 + 1007808q49 + 1427166q50 + 1146031q51 + 362231q52 - 486598q53 - 1016784q54 - 1025922q55 - 566306q56 + 76731q57 + 601389q58 + 791184q59 + 601362q60 + 184864q61 - 251172q62 - 514971q63 - 511236q64 - 296859q65 + 9059q66 + 262171q67 + 357405q68 + 292893q69 + 117808q70 - 76206q71 - 199339q72 - 222562q73 - 150480q74 - 29758q75 + 75698q76 + 133437q77 + 126227q78 + 68789q79 - 1221q80 - 59083q81 - 81143q82 - 65205q83 - 29499q84 + 12071q85 + 39575q86 + 44420q87 + 32659q88 + 9142q89 - 12545q90 - 23275q91 - 23673q92 - 13353q93 - 463q94 + 8636q95 + 13220q96 + 10556q97 + 4304q98 - 1635q99 - 6031q100 - 6008q101 - 3601q102 - 968q103 + 1930q104 + 2882q105 + 2364q106 + 1155q107 - 610q108 - 1121q109 - 969q110 - 740q111 - 49q112 + 318q113 + 491q114 + 451q115 - 23q116 - 149q117 - 103q118 - 137q119 - 31q120 - 21q121 + 50q122 + 113q123 - 8q124 - 34q125 - 8q126 - 9q127 + 11q128 - 15q129 - 6q130 + 25q131 - q132 - 8q133 - 2q134 - q135 + 6q136 - 3q137 - 2q138 + 3q139 - q140 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 104]] |
Out[2]= | PD[X[6, 2, 7, 1], X[16, 4, 17, 3], X[18, 9, 19, 10], X[14, 7, 15, 8], > X[20, 13, 1, 14], X[8, 17, 9, 18], X[10, 19, 11, 20], X[12, 6, 13, 5], > X[4, 12, 5, 11], X[2, 16, 3, 15]] |
In[3]:= | GaussCode[Knot[10, 104]] |
Out[3]= | GaussCode[1, -10, 2, -9, 8, -1, 4, -6, 3, -7, 9, -8, 5, -4, 10, -2, 6, -3, 7, > -5] |
In[4]:= | DTCode[Knot[10, 104]] |
Out[4]= | DTCode[6, 16, 12, 14, 18, 4, 20, 2, 8, 10] |
In[5]:= | br = BR[Knot[10, 104]] |
Out[5]= | BR[3, {-1, -1, -1, 2, 2, -1, 2, -1, 2, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 104]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 104]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 104]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 4, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 104]][t] |
Out[10]= | -4 4 9 15 2 3 4 19 + t - -- + -- - -- - 15 t + 9 t - 4 t + t 3 2 t t t |
In[11]:= | Conway[Knot[10, 104]][z] |
Out[11]= | 2 4 6 8 1 + z + 5 z + 4 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 104]} |
In[13]:= | {KnotDet[Knot[10, 104]], KnotSignature[Knot[10, 104]]} |
Out[13]= | {77, 0} |
In[14]:= | Jones[Knot[10, 104]][q] |
Out[14]= | -5 3 6 10 12 2 3 4 5 13 - q + -- - -- + -- - -- - 12 q + 10 q - 6 q + 3 q - q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 71], Knot[10, 104]} |
In[16]:= | A2Invariant[Knot[10, 104]][q] |
Out[16]= | -14 -12 2 2 -6 -4 3 2 4 6 8 10 -3 - q + q - --- + -- + q - q + -- + 3 q - q + q + 2 q - 2 q + 10 8 2 q q q 12 14 > q - q |
In[17]:= | HOMFLYPT[Knot[10, 104]][a, z] |
Out[17]= | 2 4 6 -2 2 2 5 z 2 2 4 4 z 2 4 6 z 3 - a - a + 11 z - ---- - 5 a z + 13 z - ---- - 4 a z + 6 z - -- - 2 2 2 a a a 2 6 8 > a z + z |
In[18]:= | Kauffman[Knot[10, 104]][a, z] |
Out[18]= | 2 2 -2 2 2 z 4 z 3 5 2 2 z 6 z 3 + a + a - --- - --- - 2 a z + a z + a z - 15 z + ---- - ---- - 3 a 4 2 a a a 3 3 3 2 2 4 2 2 z 8 z 13 z 3 3 3 5 3 > 4 a z + 3 a z - ---- + ---- + ----- + 4 a z - a z - 2 a z + 5 3 a a a 4 4 5 5 5 4 6 z 12 z 2 4 4 4 z 11 z 12 z 5 > 27 z - ---- + ----- + 3 a z - 6 a z + -- - ----- - ----- - 6 a z - 4 2 5 3 a a a a a 6 6 7 7 3 5 5 5 6 3 z 11 z 2 6 4 6 5 z 3 z > 5 a z + a z - 22 z + ---- - ----- - 5 a z + 3 a z + ---- + ---- + 4 2 3 a a a a 8 9 7 3 7 8 5 z 2 8 2 z 9 > 2 a z + 4 a z + 9 z + ---- + 4 a z + ---- + 2 a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[10, 104]], Vassiliev[3][Knot[10, 104]]} |
Out[19]= | {1, 0} |
In[20]:= | Kh[Knot[10, 104]][q, t] |
Out[20]= | 7 1 2 1 4 2 6 4 6 6 - + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 5 3 7 3 7 4 9 4 > 6 q t + 6 q t + 4 q t + 6 q t + 2 q t + 4 q t + q t + 2 q t + 11 5 > q t |
In[21]:= | ColouredJones[Knot[10, 104], 2][q] |
Out[21]= | -15 3 -13 8 16 3 33 46 7 83 76 37 133 154 + q - --- + q + --- - --- + --- + -- - -- - -- + -- - -- - -- + --- - 14 12 11 10 9 8 7 6 5 4 3 q q q q q q q q q q q 84 70 2 3 4 5 6 7 8 > -- - -- - 68 q - 86 q + 134 q - 36 q - 78 q + 84 q - 5 q - 49 q + 2 q q 9 10 11 12 13 14 15 > 33 q + 6 q - 18 q + 7 q + 2 q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10104 |
|