© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.104
10104
10.106
10106
    10.105
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 10105   

Visit 10105's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10105's page at Knotilus!

Acknowledgement

10.105
KnotPlot

PD Presentation: X4251 X12,4,13,3 X20,8,1,7 X16,5,17,6 X6,15,7,16 X10,17,11,18 X18,9,19,10 X8,14,9,13 X14,20,15,19 X2,12,3,11

Gauss Code: {1, -10, 2, -1, 4, -5, 3, -8, 7, -6, 10, -2, 8, -9, 5, -4, 6, -7, 9, -3}

DT (Dowker-Thistlethwaite) Code: 4 12 16 20 18 2 8 6 10 14

Minimum Braid Representative:


Length is 12, width is 5
Braid index is 5

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 2 3 3 / NotAvailable 1

Alexander Polynomial: t-3 - 8t-2 + 22t-1 - 29 + 22t - 8t2 + t3

Conway Polynomial: 1 - z2 - 2z4 + z6

Other knots with the same Alexander/Conway Polynomial: {K11n163, ...}

Determinant and Signature: {91, 2}

Jones Polynomial: q-3 - 3q-2 + 7q-1 - 11 + 14q - 15q2 + 15q3 - 12q4 + 8q5 - 4q6 + q7

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-10 - q-6 + 3q-4 - 2q-2 + 2q2 - 3q4 + 3q6 - 2q8 + 2q10 + q12 - 2q14 + 3q16 - 2q18 - q20 + q22

HOMFLY-PT Polynomial: a-6z2 - 2a-4z2 - 2a-4z4 + a-2 + 2a-2z2 + 2a-2z4 + a-2z6 - 1 - 3z2 - 2z4 + a2 + a2z2

Kauffman Polynomial: a-8z4 - 2a-7z3 + 4a-7z5 + 3a-6z2 - 8a-6z4 + 8a-6z6 - a-5z + 6a-5z3 - 13a-5z5 + 10a-5z7 + 5a-4z2 - 9a-4z4 - 3a-4z6 + 7a-4z8 - 3a-3z + 19a-3z3 - 33a-3z5 + 13a-3z7 + 2a-3z9 - a-2 + 4a-2z2 + 2a-2z4 - 19a-2z6 + 11a-2z8 - 4a-1z + 18a-1z3 - 24a-1z5 + 6a-1z7 + 2a-1z9 - 1 + 5z2 - z4 - 7z6 + 4z8 - 2az + 7az3 - 8az5 + 3az7 - a2 + 3a2z2 - 3a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 10105. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15          1
j = 13         3 
j = 11        51 
j = 9       73  
j = 7      85   
j = 5     77    
j = 3    78     
j = 1   58      
j = -1  26       
j = -3 15        
j = -5 2         
j = -71          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-10 - 3q-9 + q-8 + 11q-7 - 19q-6 - 6q-5 + 51q-4 - 44q-3 - 45q-2 + 117q-1 - 49 - 112q + 171q2 - 26q3 - 171q4 + 185q5 + 10q6 - 190q7 + 154q8 + 38q9 - 156q10 + 91q11 + 41q12 - 86q13 + 34q14 + 21q15 - 27q16 + 8q17 + 4q18 - 4q19 + q20
3 q-21 - 3q-20 + q-19 + 5q-18 + 3q-17 - 19q-16 - 9q-15 + 40q-14 + 36q-13 - 71q-12 - 93q-11 + 90q-10 + 200q-9 - 89q-8 - 329q-7 + 16q-6 + 488q-5 + 114q-4 - 622q-3 - 310q-2 + 712q-1 + 545 - 738q - 797q2 + 711q3 + 1023q4 - 623q5 - 1221q6 + 506q7 + 1365q8 - 355q9 - 1463q10 + 204q11 + 1479q12 - 30q13 - 1441q14 - 119q15 + 1307q16 + 262q17 - 1122q18 - 344q19 + 878q20 + 375q21 - 625q22 - 349q23 + 402q24 + 276q25 - 229q26 - 187q27 + 116q28 + 108q29 - 52q30 - 57q31 + 28q32 + 20q33 - 11q34 - 7q35 + 4q36 + 4q37 - 4q38 + q39
4 q-36 - 3q-35 + q-34 + 5q-33 - 3q-32 + 3q-31 - 22q-30 + 3q-29 + 42q-28 + 8q-27 + 10q-26 - 131q-25 - 62q-24 + 150q-23 + 168q-22 + 188q-21 - 401q-20 - 489q-19 + 51q-18 + 543q-17 + 1071q-16 - 357q-15 - 1372q-14 - 1016q-13 + 363q-12 + 2760q-11 + 1024q-10 - 1653q-9 - 3115q-8 - 1629q-7 + 3936q-6 + 3740q-5 + 101q-4 - 4744q-3 - 5330q-2 + 3049q-1 + 6190 + 3766q - 4430q2 - 9063q3 + 220q4 + 6975q5 + 7759q6 - 2333q7 - 11434q8 - 3204q9 + 6174q10 + 10833q11 + 428q12 - 12283q13 - 6213q14 + 4506q15 + 12649q16 + 3161q17 - 11785q18 - 8484q19 + 2218q20 + 12982q21 + 5650q22 - 9721q23 - 9553q24 - 621q25 + 11269q26 + 7270q27 - 6107q28 - 8620q29 - 3134q30 + 7567q31 + 6969q32 - 2233q33 - 5700q34 - 3927q35 + 3454q36 + 4733q37 + 91q38 - 2437q39 - 2840q40 + 863q41 + 2147q42 + 512q43 - 515q44 - 1278q45 + 47q46 + 630q47 + 199q48 + 22q49 - 373q50 - 10q51 + 129q52 + 10q53 + 40q54 - 76q55 + 7q56 + 24q57 - 12q58 + 9q59 - 11q60 + 4q61 + 4q62 - 4q63 + q64


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 105]]
Out[2]=   
PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[20, 8, 1, 7], X[16, 5, 17, 6], 
 
>   X[6, 15, 7, 16], X[10, 17, 11, 18], X[18, 9, 19, 10], X[8, 14, 9, 13], 
 
>   X[14, 20, 15, 19], X[2, 12, 3, 11]]
In[3]:=
GaussCode[Knot[10, 105]]
Out[3]=   
GaussCode[1, -10, 2, -1, 4, -5, 3, -8, 7, -6, 10, -2, 8, -9, 5, -4, 6, -7, 9, 
 
>   -3]
In[4]:=
DTCode[Knot[10, 105]]
Out[4]=   
DTCode[4, 12, 16, 20, 18, 2, 8, 6, 10, 14]
In[5]:=
br = BR[Knot[10, 105]]
Out[5]=   
BR[5, {1, 1, -2, 1, 3, 2, 2, -4, -3, 2, -3, -4}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{5, 12}
In[7]:=
BraidIndex[Knot[10, 105]]
Out[7]=   
5
In[8]:=
Show[DrawMorseLink[Knot[10, 105]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 105]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 2, 3, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 105]][t]
Out[10]=   
       -3   8    22             2    3
-29 + t   - -- + -- + 22 t - 8 t  + t
             2   t
            t
In[11]:=
Conway[Knot[10, 105]][z]
Out[11]=   
     2      4    6
1 - z  - 2 z  + z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 105], Knot[11, NonAlternating, 163]}
In[13]:=
{KnotDet[Knot[10, 105]], KnotSignature[Knot[10, 105]]}
Out[13]=   
{91, 2}
In[14]:=
Jones[Knot[10, 105]][q]
Out[14]=   
       -3   3    7              2       3       4      5      6    7
-11 + q   - -- + - + 14 q - 15 q  + 15 q  - 12 q  + 8 q  - 4 q  + q
             2   q
            q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 105]}
In[16]:=
A2Invariant[Knot[10, 105]][q]
Out[16]=   
 -10    -6   3    2       2      4      6      8      10    12      14
q    - q   + -- - -- + 2 q  - 3 q  + 3 q  - 2 q  + 2 q   + q   - 2 q   + 
              4    2
             q    q
 
       16      18    20    22
>   3 q   - 2 q   - q   + q
In[17]:=
HOMFLYPT[Knot[10, 105]][a, z]
Out[17]=   
                        2      2      2                     4      4    6
      -2    2      2   z    2 z    2 z     2  2      4   2 z    2 z    z
-1 + a   + a  - 3 z  + -- - ---- + ---- + a  z  - 2 z  - ---- + ---- + --
                        6     4      2                     4      2     2
                       a     a      a                     a      a     a
In[18]:=
Kauffman[Knot[10, 105]][a, z]
Out[18]=   
                                                   2      2      2
      -2    2   z    3 z   4 z              2   3 z    5 z    4 z       2  2
-1 - a   - a  - -- - --- - --- - 2 a z + 5 z  + ---- + ---- + ---- + 3 a  z  - 
                 5    3     a                     6      4      2
                a    a                           a      a      a
 
       3      3       3       3                  4      4      4      4
    2 z    6 z    19 z    18 z         3    4   z    8 z    9 z    2 z
>   ---- + ---- + ----- + ----- + 7 a z  - z  + -- - ---- - ---- + ---- - 
      7      5      3       a                    8     6      4      2
     a      a      a                            a     a      a      a
 
                 5       5       5       5                      6      6
       2  4   4 z    13 z    33 z    24 z         5      6   8 z    3 z
>   3 a  z  + ---- - ----- - ----- - ----- - 8 a z  - 7 z  + ---- - ---- - 
                7      5       3       a                       6      4
               a      a       a                               a      a
 
        6               7       7      7                      8       8
    19 z     2  6   10 z    13 z    6 z         7      8   7 z    11 z
>   ----- + a  z  + ----- + ----- + ---- + 3 a z  + 4 z  + ---- + ----- + 
      2               5       3      a                       4      2
     a               a       a                              a      a
 
       9      9
    2 z    2 z
>   ---- + ----
      3     a
     a
In[19]:=
{Vassiliev[2][Knot[10, 105]], Vassiliev[3][Knot[10, 105]]}
Out[19]=   
{-1, 0}
In[20]:=
Kh[Knot[10, 105]][q, t]
Out[20]=   
         3     1       2       1       5      2      6    5 q      3
8 q + 7 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 8 q  t + 
              7  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2      7  2      7  3      9  3      9  4      11  4
>   7 q  t + 7 q  t  + 8 q  t  + 5 q  t  + 7 q  t  + 3 q  t  + 5 q   t  + 
 
     11  5      13  5    15  6
>   q   t  + 3 q   t  + q   t
In[21]:=
ColouredJones[Knot[10, 105], 2][q]
Out[21]=   
       -10   3     -8   11   19   6    51   44   45   117                2
-49 + q    - -- + q   + -- - -- - -- + -- - -- - -- + --- - 112 q + 171 q  - 
              9          7    6    5    4    3    2    q
             q          q    q    q    q    q    q
 
        3        4        5       6        7        8       9        10
>   26 q  - 171 q  + 185 q  + 10 q  - 190 q  + 154 q  + 38 q  - 156 q   + 
 
        11       12       13       14       15       16      17      18
>   91 q   + 41 q   - 86 q   + 34 q   + 21 q   - 27 q   + 8 q   + 4 q   - 
 
       19    20
>   4 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10105
10.104
10104
10.106
10106