© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.88
1088
10.90
1090
    10.89
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 1089   

Visit 1089's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 1089's page at Knotilus!

Acknowledgement

10.89
KnotPlot

PD Presentation: X4251 X12,8,13,7 X8394 X2,9,3,10 X20,13,1,14 X14,5,15,6 X6,19,7,20 X18,16,19,15 X16,11,17,12 X10,17,11,18

Gauss Code: {1, -4, 3, -1, 6, -7, 2, -3, 4, -10, 9, -2, 5, -6, 8, -9, 10, -8, 7, -5}

DT (Dowker-Thistlethwaite) Code: 4 8 14 12 2 16 20 18 10 6

Minimum Braid Representative:


Length is 12, width is 5
Braid index is 5

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 2 3 3 / NotAvailable 1

Alexander Polynomial: t-3 - 8t-2 + 24t-1 - 33 + 24t - 8t2 + t3

Conway Polynomial: 1 + z2 - 2z4 + z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {99, -2}

Jones Polynomial: - q-8 + 3q-7 - 7q-6 + 12q-5 - 15q-4 + 17q-3 - 16q-2 + 13q-1 - 9 + 5q - q2

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-26 - q-24 + 2q-22 - q-20 - q-18 + 4q-16 - 2q-14 + 2q-12 - 2q-8 + 2q-6 - 4q-4 + 4q-2 - q2 + 3q4 - q6

HOMFLY-PT Polynomial: 1 - z4 + 2a2z2 + 2a2z4 + a2z6 - a4 - 4a4z2 - 3a4z4 + 2a6 + 3a6z2 - a8

Kauffman Polynomial: a-1z5 + 1 - 6z4 + 5z6 + 5az3 - 15az5 + 9az7 + 3a2z2 - 9a2z4 - 4a2z6 + 7a2z8 - 2a3z + 19a3z3 - 35a3z5 + 15a3z7 + 2a3z9 - a4 + 6a4z2 - 2a4z4 - 15a4z6 + 12a4z8 - 4a5z + 20a5z3 - 27a5z5 + 11a5z7 + 2a5z9 - 2a6 + 6a6z2 - 4a6z4 - 3a6z6 + 5a6z8 - a7z + 4a7z3 - 7a7z5 + 5a7z7 - a8 + 3a8z2 - 5a8z4 + 3a8z6 + a9z - 2a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1089. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 5          1
j = 3         4 
j = 1        51 
j = -1       84  
j = -3      96   
j = -5     87    
j = -7    79     
j = -9   58      
j = -11  27       
j = -13 15        
j = -15 2         
j = -171          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-23 - 3q-22 + 2q-21 + 8q-20 - 21q-19 + 9q-18 + 40q-17 - 71q-16 + 7q-15 + 116q-14 - 136q-13 - 26q-12 + 207q-11 - 171q-10 - 77q-9 + 258q-8 - 155q-7 - 114q-6 + 241q-5 - 99q-4 - 119q-3 + 167q-2 - 35q-1 - 86 + 76q + q2 - 36q3 + 17q4 + 4q5 - 5q6 + q7
3 - q-45 + 3q-44 - 2q-43 - 3q-42 + q-41 + 14q-40 - 10q-39 - 31q-38 + 20q-37 + 75q-36 - 35q-35 - 153q-34 + 28q-33 + 292q-32 + 6q-31 - 467q-30 - 114q-29 + 673q-28 + 307q-27 - 881q-26 - 562q-25 + 1026q-24 + 885q-23 - 1117q-22 - 1204q-21 + 1114q-20 + 1507q-19 - 1053q-18 - 1730q-17 + 910q-16 + 1896q-15 - 741q-14 - 1957q-13 + 524q-12 + 1939q-11 - 294q-10 - 1827q-9 + 57q-8 + 1633q-7 + 159q-6 - 1368q-5 - 325q-4 + 1062q-3 + 411q-2 - 736q-1 - 432 + 461q + 368q2 - 236q3 - 277q4 + 101q5 + 167q6 - 18q7 - 97q8 + 3q9 + 36q10 + 6q11 - 12q12 - 4q13 + 5q14 - q15
4 q-74 - 3q-73 + 2q-72 + 3q-71 - 6q-70 + 6q-69 - 13q-68 + 16q-67 + 20q-66 - 45q-65 - 40q-63 + 106q-62 + 130q-61 - 181q-60 - 161q-59 - 218q-58 + 419q-57 + 695q-56 - 268q-55 - 774q-54 - 1186q-53 + 751q-52 + 2326q-51 + 594q-50 - 1584q-49 - 3859q-48 - 128q-47 + 4756q-46 + 3577q-45 - 1046q-44 - 7924q-43 - 3589q-42 + 6165q-41 + 8297q-40 + 2290q-39 - 11306q-38 - 9075q-37 + 4913q-36 + 12568q-35 + 7749q-34 - 12208q-33 - 14273q-32 + 1434q-31 + 14582q-30 + 13103q-29 - 10699q-28 - 17371q-27 - 2636q-26 + 14189q-25 + 16767q-24 - 7773q-23 - 18027q-22 - 6245q-21 + 11911q-20 + 18345q-19 - 3972q-18 - 16384q-17 - 9072q-16 + 7990q-15 + 17662q-14 + 285q-13 - 12452q-12 - 10439q-11 + 2985q-10 + 14355q-9 + 3737q-8 - 6894q-7 - 9359q-6 - 1392q-5 + 9022q-4 + 4781q-3 - 1766q-2 - 6045q-1 - 3238 + 3825q + 3370q2 + 888q3 - 2490q4 - 2544q5 + 809q6 + 1336q7 + 1097q8 - 484q9 - 1109q10 - 53q11 + 224q12 + 480q13 + 34q14 - 278q15 - 56q16 - 21q17 + 104q18 + 33q19 - 40q20 - 6q21 - 11q22 + 12q23 + 4q24 - 5q25 + q26
5 - q-110 + 3q-109 - 2q-108 - 3q-107 + 6q-106 - q-105 - 7q-104 + 7q-103 - 5q-102 - 10q-101 + 32q-100 + 18q-99 - 38q-98 - 40q-97 - 49q-96 + 12q-95 + 183q-94 + 202q-93 - 67q-92 - 404q-91 - 522q-90 - 107q-89 + 827q-88 + 1359q-87 + 601q-86 - 1305q-85 - 2871q-84 - 2082q-83 + 1500q-82 + 5264q-81 + 5144q-80 - 497q-79 - 8233q-78 - 10599q-77 - 2801q-76 + 10815q-75 + 18409q-74 + 10043q-73 - 11294q-72 - 28159q-71 - 21982q-70 + 7668q-69 + 37774q-68 + 38711q-67 + 2139q-66 - 44958q-65 - 58903q-64 - 18807q-63 + 47105q-62 + 79782q-61 + 41861q-60 - 42121q-59 - 98701q-58 - 69237q-57 + 30011q-56 + 112623q-55 + 97755q-54 - 11282q-53 - 120244q-52 - 124675q-51 - 11230q-50 + 121050q-49 + 147300q-48 + 35395q-47 - 116191q-46 - 164552q-45 - 58440q-44 + 106998q-43 + 176022q-42 + 79292q-41 - 95395q-40 - 182393q-39 - 96779q-38 + 82072q-37 + 184355q-36 + 111567q-35 - 67920q-34 - 182731q-33 - 123496q-32 + 52498q-31 + 177419q-30 + 133463q-29 - 35656q-28 - 168406q-27 - 140939q-26 + 17071q-25 + 154852q-24 + 145474q-23 + 2968q-22 - 136469q-21 - 145828q-20 - 23266q-19 + 113285q-18 + 140724q-17 + 41963q-16 - 86346q-15 - 129342q-14 - 56827q-13 + 57841q-12 + 111902q-11 + 65579q-10 - 30559q-9 - 89671q-8 - 67235q-7 + 7408q-6 + 65515q-5 + 61828q-4 + 9165q-3 - 42095q-2 - 51260q-1 - 18483 + 22598q + 37988q2 + 21019q3 - 8346q4 - 25002q5 - 18809q6 + 18q7 + 14066q8 + 14187q9 + 3800q10 - 6649q11 - 9204q12 - 4223q13 + 2143q14 + 5070q15 + 3485q16 - 222q17 - 2458q18 - 2084q19 - 429q20 + 895q21 + 1152q22 + 449q23 - 319q24 - 490q25 - 254q26 + 54q27 + 171q28 + 140q29 + 7q30 - 80q31 - 40q32 + 4q33 + 10q34 + 11q35 + 11q36 - 12q37 - 4q38 + 5q39 - q40
6 q-153 - 3q-152 + 2q-151 + 3q-150 - 6q-149 + q-148 + 2q-147 + 13q-146 - 18q-145 - 5q-144 + 23q-143 - 35q-142 - 2q-141 + 29q-140 + 84q-139 - 39q-138 - 80q-137 + 6q-136 - 183q-135 - 39q-134 + 222q-133 + 538q-132 + 163q-131 - 299q-130 - 474q-129 - 1264q-128 - 723q-127 + 757q-126 + 2778q-125 + 2561q-124 + 633q-123 - 1947q-122 - 6486q-121 - 6551q-120 - 1409q-119 + 8319q-118 + 13858q-117 + 11931q-116 + 1825q-115 - 18510q-114 - 30296q-113 - 23995q-112 + 5490q-111 + 37906q-110 + 55570q-109 + 41676q-108 - 16054q-107 - 76580q-106 - 101709q-105 - 54925q-104 + 38741q-103 + 135206q-102 + 167164q-101 + 74382q-100 - 89280q-99 - 234071q-98 - 237747q-97 - 85271q-96 + 169279q-95 + 368560q-94 + 330955q-93 + 61894q-92 - 309994q-91 - 518360q-90 - 419792q-89 + 1901q-88 + 503434q-87 + 708363q-86 + 461572q-85 - 154155q-84 - 724847q-83 - 893256q-82 - 441190q-81 + 385642q-80 + 1008702q-79 + 1009106q-78 + 290363q-77 - 669820q-76 - 1287386q-75 - 1031393q-74 - 20239q-73 + 1049771q-72 + 1474204q-71 + 873701q-70 - 339098q-69 - 1430264q-68 - 1536799q-67 - 553067q-66 + 832731q-65 + 1700374q-64 + 1374897q-63 + 107102q-62 - 1332607q-61 - 1821200q-60 - 1014325q-59 + 504094q-58 + 1704725q-57 + 1683461q-56 + 502100q-55 - 1120225q-54 - 1907246q-53 - 1322990q-52 + 192914q-51 + 1591422q-50 + 1828892q-49 + 795906q-48 - 885422q-47 - 1879548q-46 - 1516518q-45 - 80945q-44 + 1420734q-43 + 1879600q-42 + 1033995q-41 - 622190q-40 - 1770803q-39 - 1649075q-38 - 369544q-37 + 1164970q-36 + 1843110q-35 + 1256130q-34 - 274757q-33 - 1533185q-32 - 1702203q-31 - 695670q-30 + 766439q-29 + 1649785q-28 + 1414442q-27 + 159076q-26 - 1106663q-25 - 1580502q-24 - 976920q-23 + 245365q-22 + 1234571q-21 + 1383990q-20 + 559209q-19 - 533358q-18 - 1211702q-17 - 1056845q-16 - 241986q-15 + 658679q-14 + 1085958q-13 + 741503q-12 + 85q-11 - 674173q-10 - 853697q-9 - 493832q-8 + 130178q-7 + 615513q-6 + 629512q-5 + 287272q-4 - 188657q-3 - 478721q-2 - 449328q-1 - 153211 + 197545q + 350261q2 + 290494q3 + 65923q4 - 151498q5 - 249195q6 - 179840q7 - 14670q8 + 110029q9 + 157541q10 + 101533q11 + 4575q12 - 79513q13 - 95331q14 - 50689q15 + 2707q16 + 47384q17 + 52006q18 + 29398q19 - 7712q20 - 27520q21 - 25068q22 - 13711q23 + 4612q24 + 13763q25 + 14196q26 + 4221q27 - 3275q28 - 5872q29 - 6117q30 - 1862q31 + 1467q32 + 3589q33 + 1823q34 + 358q35 - 492q36 - 1315q37 - 786q38 - 162q39 + 592q40 + 285q41 + 159q42 + 70q43 - 166q44 - 130q45 - 76q46 + 94q47 + 16q48 + 3q49 + 26q50 - 15q51 - 11q52 - 11q53 + 12q54 + 4q55 - 5q56 + q57


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 89]]
Out[2]=   
PD[X[4, 2, 5, 1], X[12, 8, 13, 7], X[8, 3, 9, 4], X[2, 9, 3, 10], 
 
>   X[20, 13, 1, 14], X[14, 5, 15, 6], X[6, 19, 7, 20], X[18, 16, 19, 15], 
 
>   X[16, 11, 17, 12], X[10, 17, 11, 18]]
In[3]:=
GaussCode[Knot[10, 89]]
Out[3]=   
GaussCode[1, -4, 3, -1, 6, -7, 2, -3, 4, -10, 9, -2, 5, -6, 8, -9, 10, -8, 7, 
 
>   -5]
In[4]:=
DTCode[Knot[10, 89]]
Out[4]=   
DTCode[4, 8, 14, 12, 2, 16, 20, 18, 10, 6]
In[5]:=
br = BR[Knot[10, 89]]
Out[5]=   
BR[5, {-1, 2, -1, 2, 3, -2, -1, -4, -3, 2, -3, -4}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{5, 12}
In[7]:=
BraidIndex[Knot[10, 89]]
Out[7]=   
5
In[8]:=
Show[DrawMorseLink[Knot[10, 89]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 89]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 2, 3, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 89]][t]
Out[10]=   
       -3   8    24             2    3
-33 + t   - -- + -- + 24 t - 8 t  + t
             2   t
            t
In[11]:=
Conway[Knot[10, 89]][z]
Out[11]=   
     2      4    6
1 + z  - 2 z  + z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 89]}
In[13]:=
{KnotDet[Knot[10, 89]], KnotSignature[Knot[10, 89]]}
Out[13]=   
{99, -2}
In[14]:=
Jones[Knot[10, 89]][q]
Out[14]=   
      -8   3    7    12   15   17   16   13          2
-9 - q   + -- - -- + -- - -- + -- - -- + -- + 5 q - q
            7    6    5    4    3    2   q
           q    q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 89]}
In[16]:=
A2Invariant[Knot[10, 89]][q]
Out[16]=   
  -26    -24    2     -20    -18    4     2     2    2    2    4    4     2
-q    - q    + --- - q    - q    + --- - --- + --- - -- + -- - -- + -- - q  + 
                22                  16    14    12    8    6    4    2
               q                   q     q     q     q    q    q    q
 
       4    6
>   3 q  - q
In[17]:=
HOMFLYPT[Knot[10, 89]][a, z]
Out[17]=   
     4      6    8      2  2      4  2      6  2    4      2  4      4  4
1 - a  + 2 a  - a  + 2 a  z  - 4 a  z  + 3 a  z  - z  + 2 a  z  - 3 a  z  + 
 
     2  6
>   a  z
In[18]:=
Kauffman[Knot[10, 89]][a, z]
Out[18]=   
     4      6    8      3        5      7      9        2  2      4  2
1 - a  - 2 a  - a  - 2 a  z - 4 a  z - a  z + a  z + 3 a  z  + 6 a  z  + 
 
       6  2      8  2        3       3  3       5  3      7  3      9  3
>   6 a  z  + 3 a  z  + 5 a z  + 19 a  z  + 20 a  z  + 4 a  z  - 2 a  z  - 
 
                                                    5
       4      2  4      4  4      6  4      8  4   z          5       3  5
>   6 z  - 9 a  z  - 2 a  z  - 4 a  z  - 5 a  z  + -- - 15 a z  - 35 a  z  - 
                                                   a
 
        5  5      7  5    9  5      6      2  6       4  6      6  6
>   27 a  z  - 7 a  z  + a  z  + 5 z  - 4 a  z  - 15 a  z  - 3 a  z  + 
 
       8  6        7       3  7       5  7      7  7      2  8       4  8
>   3 a  z  + 9 a z  + 15 a  z  + 11 a  z  + 5 a  z  + 7 a  z  + 12 a  z  + 
 
       6  8      3  9      5  9
>   5 a  z  + 2 a  z  + 2 a  z
In[19]:=
{Vassiliev[2][Knot[10, 89]], Vassiliev[3][Knot[10, 89]]}
Out[19]=   
{1, -3}
In[20]:=
Kh[Knot[10, 89]][q, t]
Out[20]=   
6    8     1        2        1        5        2        7        5       8
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q        q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      7       9       8      7      9     4 t              2      3  2    5  3
>   ----- + ----- + ----- + ---- + ---- + --- + 5 q t + q t  + 4 q  t  + q  t
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
In[21]:=
ColouredJones[Knot[10, 89], 2][q]
Out[21]=   
       -23    3     2     8    21     9    40    71     7    116   136   26
-86 + q    - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- - --- + 
              22    21    20    19    18    17    16    15    14    13    12
             q     q     q     q     q     q     q     q     q     q     q
 
    207   171   77   258   155   114   241   99   119   167   35           2
>   --- - --- - -- + --- - --- - --- + --- - -- - --- + --- - -- + 76 q + q  - 
     11    10    9    8     7     6     5     4    3     2    q
    q     q     q    q     q     q     q     q    q     q
 
        3       4      5      6    7
>   36 q  + 17 q  + 4 q  - 5 q  + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1089
10.88
1088
10.90
1090