© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1089Visit 1089's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1089's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X12,8,13,7 X8394 X2,9,3,10 X20,13,1,14 X14,5,15,6 X6,19,7,20 X18,16,19,15 X16,11,17,12 X10,17,11,18 |
Gauss Code: | {1, -4, 3, -1, 6, -7, 2, -3, 4, -10, 9, -2, 5, -6, 8, -9, 10, -8, 7, -5} |
DT (Dowker-Thistlethwaite) Code: | 4 8 14 12 2 16 20 18 10 6 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 8t-2 + 24t-1 - 33 + 24t - 8t2 + t3 |
Conway Polynomial: | 1 + z2 - 2z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {99, -2} |
Jones Polynomial: | - q-8 + 3q-7 - 7q-6 + 12q-5 - 15q-4 + 17q-3 - 16q-2 + 13q-1 - 9 + 5q - q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-26 - q-24 + 2q-22 - q-20 - q-18 + 4q-16 - 2q-14 + 2q-12 - 2q-8 + 2q-6 - 4q-4 + 4q-2 - q2 + 3q4 - q6 |
HOMFLY-PT Polynomial: | 1 - z4 + 2a2z2 + 2a2z4 + a2z6 - a4 - 4a4z2 - 3a4z4 + 2a6 + 3a6z2 - a8 |
Kauffman Polynomial: | a-1z5 + 1 - 6z4 + 5z6 + 5az3 - 15az5 + 9az7 + 3a2z2 - 9a2z4 - 4a2z6 + 7a2z8 - 2a3z + 19a3z3 - 35a3z5 + 15a3z7 + 2a3z9 - a4 + 6a4z2 - 2a4z4 - 15a4z6 + 12a4z8 - 4a5z + 20a5z3 - 27a5z5 + 11a5z7 + 2a5z9 - 2a6 + 6a6z2 - 4a6z4 - 3a6z6 + 5a6z8 - a7z + 4a7z3 - 7a7z5 + 5a7z7 - a8 + 3a8z2 - 5a8z4 + 3a8z6 + a9z - 2a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -3} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1089. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - 3q-22 + 2q-21 + 8q-20 - 21q-19 + 9q-18 + 40q-17 - 71q-16 + 7q-15 + 116q-14 - 136q-13 - 26q-12 + 207q-11 - 171q-10 - 77q-9 + 258q-8 - 155q-7 - 114q-6 + 241q-5 - 99q-4 - 119q-3 + 167q-2 - 35q-1 - 86 + 76q + q2 - 36q3 + 17q4 + 4q5 - 5q6 + q7 |
3 | - q-45 + 3q-44 - 2q-43 - 3q-42 + q-41 + 14q-40 - 10q-39 - 31q-38 + 20q-37 + 75q-36 - 35q-35 - 153q-34 + 28q-33 + 292q-32 + 6q-31 - 467q-30 - 114q-29 + 673q-28 + 307q-27 - 881q-26 - 562q-25 + 1026q-24 + 885q-23 - 1117q-22 - 1204q-21 + 1114q-20 + 1507q-19 - 1053q-18 - 1730q-17 + 910q-16 + 1896q-15 - 741q-14 - 1957q-13 + 524q-12 + 1939q-11 - 294q-10 - 1827q-9 + 57q-8 + 1633q-7 + 159q-6 - 1368q-5 - 325q-4 + 1062q-3 + 411q-2 - 736q-1 - 432 + 461q + 368q2 - 236q3 - 277q4 + 101q5 + 167q6 - 18q7 - 97q8 + 3q9 + 36q10 + 6q11 - 12q12 - 4q13 + 5q14 - q15 |
4 | q-74 - 3q-73 + 2q-72 + 3q-71 - 6q-70 + 6q-69 - 13q-68 + 16q-67 + 20q-66 - 45q-65 - 40q-63 + 106q-62 + 130q-61 - 181q-60 - 161q-59 - 218q-58 + 419q-57 + 695q-56 - 268q-55 - 774q-54 - 1186q-53 + 751q-52 + 2326q-51 + 594q-50 - 1584q-49 - 3859q-48 - 128q-47 + 4756q-46 + 3577q-45 - 1046q-44 - 7924q-43 - 3589q-42 + 6165q-41 + 8297q-40 + 2290q-39 - 11306q-38 - 9075q-37 + 4913q-36 + 12568q-35 + 7749q-34 - 12208q-33 - 14273q-32 + 1434q-31 + 14582q-30 + 13103q-29 - 10699q-28 - 17371q-27 - 2636q-26 + 14189q-25 + 16767q-24 - 7773q-23 - 18027q-22 - 6245q-21 + 11911q-20 + 18345q-19 - 3972q-18 - 16384q-17 - 9072q-16 + 7990q-15 + 17662q-14 + 285q-13 - 12452q-12 - 10439q-11 + 2985q-10 + 14355q-9 + 3737q-8 - 6894q-7 - 9359q-6 - 1392q-5 + 9022q-4 + 4781q-3 - 1766q-2 - 6045q-1 - 3238 + 3825q + 3370q2 + 888q3 - 2490q4 - 2544q5 + 809q6 + 1336q7 + 1097q8 - 484q9 - 1109q10 - 53q11 + 224q12 + 480q13 + 34q14 - 278q15 - 56q16 - 21q17 + 104q18 + 33q19 - 40q20 - 6q21 - 11q22 + 12q23 + 4q24 - 5q25 + q26 |
5 | - q-110 + 3q-109 - 2q-108 - 3q-107 + 6q-106 - q-105 - 7q-104 + 7q-103 - 5q-102 - 10q-101 + 32q-100 + 18q-99 - 38q-98 - 40q-97 - 49q-96 + 12q-95 + 183q-94 + 202q-93 - 67q-92 - 404q-91 - 522q-90 - 107q-89 + 827q-88 + 1359q-87 + 601q-86 - 1305q-85 - 2871q-84 - 2082q-83 + 1500q-82 + 5264q-81 + 5144q-80 - 497q-79 - 8233q-78 - 10599q-77 - 2801q-76 + 10815q-75 + 18409q-74 + 10043q-73 - 11294q-72 - 28159q-71 - 21982q-70 + 7668q-69 + 37774q-68 + 38711q-67 + 2139q-66 - 44958q-65 - 58903q-64 - 18807q-63 + 47105q-62 + 79782q-61 + 41861q-60 - 42121q-59 - 98701q-58 - 69237q-57 + 30011q-56 + 112623q-55 + 97755q-54 - 11282q-53 - 120244q-52 - 124675q-51 - 11230q-50 + 121050q-49 + 147300q-48 + 35395q-47 - 116191q-46 - 164552q-45 - 58440q-44 + 106998q-43 + 176022q-42 + 79292q-41 - 95395q-40 - 182393q-39 - 96779q-38 + 82072q-37 + 184355q-36 + 111567q-35 - 67920q-34 - 182731q-33 - 123496q-32 + 52498q-31 + 177419q-30 + 133463q-29 - 35656q-28 - 168406q-27 - 140939q-26 + 17071q-25 + 154852q-24 + 145474q-23 + 2968q-22 - 136469q-21 - 145828q-20 - 23266q-19 + 113285q-18 + 140724q-17 + 41963q-16 - 86346q-15 - 129342q-14 - 56827q-13 + 57841q-12 + 111902q-11 + 65579q-10 - 30559q-9 - 89671q-8 - 67235q-7 + 7408q-6 + 65515q-5 + 61828q-4 + 9165q-3 - 42095q-2 - 51260q-1 - 18483 + 22598q + 37988q2 + 21019q3 - 8346q4 - 25002q5 - 18809q6 + 18q7 + 14066q8 + 14187q9 + 3800q10 - 6649q11 - 9204q12 - 4223q13 + 2143q14 + 5070q15 + 3485q16 - 222q17 - 2458q18 - 2084q19 - 429q20 + 895q21 + 1152q22 + 449q23 - 319q24 - 490q25 - 254q26 + 54q27 + 171q28 + 140q29 + 7q30 - 80q31 - 40q32 + 4q33 + 10q34 + 11q35 + 11q36 - 12q37 - 4q38 + 5q39 - q40 |
6 | q-153 - 3q-152 + 2q-151 + 3q-150 - 6q-149 + q-148 + 2q-147 + 13q-146 - 18q-145 - 5q-144 + 23q-143 - 35q-142 - 2q-141 + 29q-140 + 84q-139 - 39q-138 - 80q-137 + 6q-136 - 183q-135 - 39q-134 + 222q-133 + 538q-132 + 163q-131 - 299q-130 - 474q-129 - 1264q-128 - 723q-127 + 757q-126 + 2778q-125 + 2561q-124 + 633q-123 - 1947q-122 - 6486q-121 - 6551q-120 - 1409q-119 + 8319q-118 + 13858q-117 + 11931q-116 + 1825q-115 - 18510q-114 - 30296q-113 - 23995q-112 + 5490q-111 + 37906q-110 + 55570q-109 + 41676q-108 - 16054q-107 - 76580q-106 - 101709q-105 - 54925q-104 + 38741q-103 + 135206q-102 + 167164q-101 + 74382q-100 - 89280q-99 - 234071q-98 - 237747q-97 - 85271q-96 + 169279q-95 + 368560q-94 + 330955q-93 + 61894q-92 - 309994q-91 - 518360q-90 - 419792q-89 + 1901q-88 + 503434q-87 + 708363q-86 + 461572q-85 - 154155q-84 - 724847q-83 - 893256q-82 - 441190q-81 + 385642q-80 + 1008702q-79 + 1009106q-78 + 290363q-77 - 669820q-76 - 1287386q-75 - 1031393q-74 - 20239q-73 + 1049771q-72 + 1474204q-71 + 873701q-70 - 339098q-69 - 1430264q-68 - 1536799q-67 - 553067q-66 + 832731q-65 + 1700374q-64 + 1374897q-63 + 107102q-62 - 1332607q-61 - 1821200q-60 - 1014325q-59 + 504094q-58 + 1704725q-57 + 1683461q-56 + 502100q-55 - 1120225q-54 - 1907246q-53 - 1322990q-52 + 192914q-51 + 1591422q-50 + 1828892q-49 + 795906q-48 - 885422q-47 - 1879548q-46 - 1516518q-45 - 80945q-44 + 1420734q-43 + 1879600q-42 + 1033995q-41 - 622190q-40 - 1770803q-39 - 1649075q-38 - 369544q-37 + 1164970q-36 + 1843110q-35 + 1256130q-34 - 274757q-33 - 1533185q-32 - 1702203q-31 - 695670q-30 + 766439q-29 + 1649785q-28 + 1414442q-27 + 159076q-26 - 1106663q-25 - 1580502q-24 - 976920q-23 + 245365q-22 + 1234571q-21 + 1383990q-20 + 559209q-19 - 533358q-18 - 1211702q-17 - 1056845q-16 - 241986q-15 + 658679q-14 + 1085958q-13 + 741503q-12 + 85q-11 - 674173q-10 - 853697q-9 - 493832q-8 + 130178q-7 + 615513q-6 + 629512q-5 + 287272q-4 - 188657q-3 - 478721q-2 - 449328q-1 - 153211 + 197545q + 350261q2 + 290494q3 + 65923q4 - 151498q5 - 249195q6 - 179840q7 - 14670q8 + 110029q9 + 157541q10 + 101533q11 + 4575q12 - 79513q13 - 95331q14 - 50689q15 + 2707q16 + 47384q17 + 52006q18 + 29398q19 - 7712q20 - 27520q21 - 25068q22 - 13711q23 + 4612q24 + 13763q25 + 14196q26 + 4221q27 - 3275q28 - 5872q29 - 6117q30 - 1862q31 + 1467q32 + 3589q33 + 1823q34 + 358q35 - 492q36 - 1315q37 - 786q38 - 162q39 + 592q40 + 285q41 + 159q42 + 70q43 - 166q44 - 130q45 - 76q46 + 94q47 + 16q48 + 3q49 + 26q50 - 15q51 - 11q52 - 11q53 + 12q54 + 4q55 - 5q56 + q57 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 89]] |
Out[2]= | PD[X[4, 2, 5, 1], X[12, 8, 13, 7], X[8, 3, 9, 4], X[2, 9, 3, 10], > X[20, 13, 1, 14], X[14, 5, 15, 6], X[6, 19, 7, 20], X[18, 16, 19, 15], > X[16, 11, 17, 12], X[10, 17, 11, 18]] |
In[3]:= | GaussCode[Knot[10, 89]] |
Out[3]= | GaussCode[1, -4, 3, -1, 6, -7, 2, -3, 4, -10, 9, -2, 5, -6, 8, -9, 10, -8, 7, > -5] |
In[4]:= | DTCode[Knot[10, 89]] |
Out[4]= | DTCode[4, 8, 14, 12, 2, 16, 20, 18, 10, 6] |
In[5]:= | br = BR[Knot[10, 89]] |
Out[5]= | BR[5, {-1, 2, -1, 2, 3, -2, -1, -4, -3, 2, -3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 89]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 89]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 89]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 89]][t] |
Out[10]= | -3 8 24 2 3 -33 + t - -- + -- + 24 t - 8 t + t 2 t t |
In[11]:= | Conway[Knot[10, 89]][z] |
Out[11]= | 2 4 6 1 + z - 2 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 89]} |
In[13]:= | {KnotDet[Knot[10, 89]], KnotSignature[Knot[10, 89]]} |
Out[13]= | {99, -2} |
In[14]:= | Jones[Knot[10, 89]][q] |
Out[14]= | -8 3 7 12 15 17 16 13 2 -9 - q + -- - -- + -- - -- + -- - -- + -- + 5 q - q 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 89]} |
In[16]:= | A2Invariant[Knot[10, 89]][q] |
Out[16]= | -26 -24 2 -20 -18 4 2 2 2 2 4 4 2 -q - q + --- - q - q + --- - --- + --- - -- + -- - -- + -- - q + 22 16 14 12 8 6 4 2 q q q q q q q q 4 6 > 3 q - q |
In[17]:= | HOMFLYPT[Knot[10, 89]][a, z] |
Out[17]= | 4 6 8 2 2 4 2 6 2 4 2 4 4 4 1 - a + 2 a - a + 2 a z - 4 a z + 3 a z - z + 2 a z - 3 a z + 2 6 > a z |
In[18]:= | Kauffman[Knot[10, 89]][a, z] |
Out[18]= | 4 6 8 3 5 7 9 2 2 4 2 1 - a - 2 a - a - 2 a z - 4 a z - a z + a z + 3 a z + 6 a z + 6 2 8 2 3 3 3 5 3 7 3 9 3 > 6 a z + 3 a z + 5 a z + 19 a z + 20 a z + 4 a z - 2 a z - 5 4 2 4 4 4 6 4 8 4 z 5 3 5 > 6 z - 9 a z - 2 a z - 4 a z - 5 a z + -- - 15 a z - 35 a z - a 5 5 7 5 9 5 6 2 6 4 6 6 6 > 27 a z - 7 a z + a z + 5 z - 4 a z - 15 a z - 3 a z + 8 6 7 3 7 5 7 7 7 2 8 4 8 > 3 a z + 9 a z + 15 a z + 11 a z + 5 a z + 7 a z + 12 a z + 6 8 3 9 5 9 > 5 a z + 2 a z + 2 a z |
In[19]:= | {Vassiliev[2][Knot[10, 89]], Vassiliev[3][Knot[10, 89]]} |
Out[19]= | {1, -3} |
In[20]:= | Kh[Knot[10, 89]][q, t] |
Out[20]= | 6 8 1 2 1 5 2 7 5 8 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 9 3 q q t q t q t q t q t q t q t q t 7 9 8 7 9 4 t 2 3 2 5 3 > ----- + ----- + ----- + ---- + ---- + --- + 5 q t + q t + 4 q t + q t 7 3 7 2 5 2 5 3 q q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 89], 2][q] |
Out[21]= | -23 3 2 8 21 9 40 71 7 116 136 26 -86 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- - --- + 22 21 20 19 18 17 16 15 14 13 12 q q q q q q q q q q q 207 171 77 258 155 114 241 99 119 167 35 2 > --- - --- - -- + --- - --- - --- + --- - -- - --- + --- - -- + 76 q + q - 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q 3 4 5 6 7 > 36 q + 17 q + 4 q - 5 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1089 |
|