© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.87
1087
10.89
1089
    10.88
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 1088   

Visit 1088's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 1088's page at Knotilus!

Acknowledgement

10.88
KnotPlot

PD Presentation: X4251 X20,14,1,13 X8394 X2,9,3,10 X14,7,15,8 X18,15,19,16 X12,6,13,5 X10,18,11,17 X16,12,17,11 X6,19,7,20

Gauss Code: {1, -4, 3, -1, 7, -10, 5, -3, 4, -8, 9, -7, 2, -5, 6, -9, 8, -6, 10, -2}

DT (Dowker-Thistlethwaite) Code: 4 8 12 14 2 16 20 18 10 6

Minimum Braid Representative:


Length is 10, width is 5
Braid index is 5

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
NegativeAmphicheiral 1 3 3 / NotAvailable 1

Alexander Polynomial: - t-3 + 8t-2 - 24t-1 + 35 - 24t + 8t2 - t3

Conway Polynomial: 1 - z2 + 2z4 - z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {101, 0}

Jones Polynomial: - q-5 + 4q-4 - 8q-3 + 13q-2 - 16q-1 + 17 - 16q + 13q2 - 8q3 + 4q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-16 + q-14 + 2q-12 - 3q-10 + 3q-8 - 2q-4 + 3q-2 - 3 + 3q2 - 2q4 + 3q8 - 3q10 + 2q12 + q14 - q16

HOMFLY-PT Polynomial: - a-4z2 + a-2 + 2a-2z2 + 2a-2z4 - 1 - 3z2 - 2z4 - z6 + a2 + 2a2z2 + 2a2z4 - a4z2

Kauffman Polynomial: - a-5z3 + a-5z5 + 3a-4z2 - 6a-4z4 + 4a-4z6 - a-3z + 6a-3z3 - 11a-3z5 + 7a-3z7 - a-2 + 7a-2z2 - 10a-2z4 - 2a-2z6 + 6a-2z8 - 4a-1z + 19a-1z3 - 32a-1z5 + 14a-1z7 + 2a-1z9 - 1 + 8z2 - 8z4 - 12z6 + 12z8 - 4az + 19az3 - 32az5 + 14az7 + 2az9 - a2 + 7a2z2 - 10a2z4 - 2a2z6 + 6a2z8 - a3z + 6a3z3 - 11a3z5 + 7a3z7 + 3a4z2 - 6a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1088. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11          1
j = 9         3 
j = 7        51 
j = 5       83  
j = 3      85   
j = 1     98    
j = -1    89     
j = -3   58      
j = -5  38       
j = -7 15        
j = -9 3         
j = -111          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-15 - 4q-14 + 3q-13 + 12q-12 - 29q-11 + 7q-10 + 59q-9 - 84q-8 - 12q-7 + 150q-6 - 138q-5 - 65q-4 + 239q-3 - 153q-2 - 123q-1 + 275 - 123q - 153q2 + 239q3 - 65q4 - 138q5 + 150q6 - 12q7 - 84q8 + 59q9 + 7q10 - 29q11 + 12q12 + 3q13 - 4q14 + q15
3 - q-30 + 4q-29 - 3q-28 - 7q-27 + 4q-26 + 24q-25 - 8q-24 - 64q-23 + 12q-22 + 130q-21 + 15q-20 - 245q-19 - 84q-18 + 391q-17 + 229q-16 - 551q-15 - 453q-14 + 674q-13 + 771q-12 - 760q-11 - 1111q-10 + 745q-9 + 1471q-8 - 664q-7 - 1781q-6 + 513q-5 + 2025q-4 - 325q-3 - 2172q-2 + 110q-1 + 2223 + 110q - 2172q2 - 325q3 + 2025q4 + 513q5 - 1781q6 - 664q7 + 1471q8 + 745q9 - 1111q10 - 760q11 + 771q12 + 674q13 - 453q14 - 551q15 + 229q16 + 391q17 - 84q18 - 245q19 + 15q20 + 130q21 + 12q22 - 64q23 - 8q24 + 24q25 + 4q26 - 7q27 - 3q28 + 4q29 - q30
4 q-50 - 4q-49 + 3q-48 + 7q-47 - 9q-46 + q-45 - 23q-44 + 28q-43 + 57q-42 - 50q-41 - 41q-40 - 138q-39 + 126q-38 + 337q-37 - 50q-36 - 251q-35 - 716q-34 + 162q-33 + 1214q-32 + 557q-31 - 431q-30 - 2424q-29 - 760q-28 + 2541q-27 + 2732q-26 + 658q-25 - 5136q-24 - 3919q-23 + 2771q-22 + 6350q-21 + 4546q-20 - 7050q-19 - 9106q-18 + 165q-17 + 9436q-16 + 10854q-15 - 6275q-14 - 14088q-13 - 4965q-12 + 10078q-11 + 17176q-10 - 2981q-9 - 16783q-8 - 10469q-7 + 8268q-6 + 21342q-5 + 1199q-4 - 16789q-3 - 14594q-2 + 5083q-1 + 22721 + 5083q - 14594q2 - 16789q3 + 1199q4 + 21342q5 + 8268q6 - 10469q7 - 16783q8 - 2981q9 + 17176q10 + 10078q11 - 4965q12 - 14088q13 - 6275q14 + 10854q15 + 9436q16 + 165q17 - 9106q18 - 7050q19 + 4546q20 + 6350q21 + 2771q22 - 3919q23 - 5136q24 + 658q25 + 2732q26 + 2541q27 - 760q28 - 2424q29 - 431q30 + 557q31 + 1214q32 + 162q33 - 716q34 - 251q35 - 50q36 + 337q37 + 126q38 - 138q39 - 41q40 - 50q41 + 57q42 + 28q43 - 23q44 + q45 - 9q46 + 7q47 + 3q48 - 4q49 + q50
5 - q-75 + 4q-74 - 3q-73 - 7q-72 + 9q-71 + 4q-70 - 2q-69 + 3q-68 - 21q-67 - 34q-66 + 40q-65 + 84q-64 + 33q-63 - 59q-62 - 199q-61 - 197q-60 + 113q-59 + 531q-58 + 543q-57 - 109q-56 - 1040q-55 - 1392q-54 - 320q-53 + 1822q-52 + 3134q-51 + 1551q-50 - 2527q-49 - 5861q-48 - 4569q-47 + 2283q-46 + 9758q-45 + 10091q-44 + 71q-43 - 13769q-42 - 18660q-41 - 6376q-40 + 16455q-39 + 29950q-38 + 17815q-37 - 15371q-36 - 42477q-35 - 34960q-34 + 8400q-33 + 53555q-32 + 56888q-31 + 6187q-30 - 60539q-29 - 81348q-28 - 27953q-27 + 60590q-26 + 105028q-25 + 55924q-24 - 52997q-23 - 125046q-22 - 86597q-21 + 37910q-20 + 138741q-19 + 117296q-18 - 17294q-17 - 145636q-16 - 144641q-15 - 6338q-14 + 145775q-13 + 167068q-12 + 30435q-11 - 140607q-10 - 183710q-9 - 53108q-8 + 131586q-7 + 194854q-6 + 73319q-5 - 119974q-4 - 201061q-3 - 91032q-2 + 106443q-1 + 203085 + 106443q - 91032q2 - 201061q3 - 119974q4 + 73319q5 + 194854q6 + 131586q7 - 53108q8 - 183710q9 - 140607q10 + 30435q11 + 167068q12 + 145775q13 - 6338q14 - 144641q15 - 145636q16 - 17294q17 + 117296q18 + 138741q19 + 37910q20 - 86597q21 - 125046q22 - 52997q23 + 55924q24 + 105028q25 + 60590q26 - 27953q27 - 81348q28 - 60539q29 + 6187q30 + 56888q31 + 53555q32 + 8400q33 - 34960q34 - 42477q35 - 15371q36 + 17815q37 + 29950q38 + 16455q39 - 6376q40 - 18660q41 - 13769q42 + 71q43 + 10091q44 + 9758q45 + 2283q46 - 4569q47 - 5861q48 - 2527q49 + 1551q50 + 3134q51 + 1822q52 - 320q53 - 1392q54 - 1040q55 - 109q56 + 543q57 + 531q58 + 113q59 - 197q60 - 199q61 - 59q62 + 33q63 + 84q64 + 40q65 - 34q66 - 21q67 + 3q68 - 2q69 + 4q70 + 9q71 - 7q72 - 3q73 + 4q74 - q75
6 q-105 - 4q-104 + 3q-103 + 7q-102 - 9q-101 - 4q-100 - 3q-99 + 22q-98 - 10q-97 - 2q-96 + 44q-95 - 68q-94 - 58q-93 - 20q-92 + 145q-91 + 95q-90 + 46q-89 + 125q-88 - 408q-87 - 531q-86 - 317q-85 + 615q-84 + 967q-83 + 1024q-82 + 876q-81 - 1619q-80 - 3217q-79 - 3248q-78 + 420q-77 + 4033q-76 + 6961q-75 + 7385q-74 - 1329q-73 - 11203q-72 - 17531q-71 - 10354q-70 + 4368q-69 + 23577q-68 + 35863q-67 + 19355q-66 - 14959q-65 - 52800q-64 - 59173q-63 - 30996q-62 + 33402q-61 + 99926q-60 + 104116q-59 + 38455q-58 - 79161q-57 - 162940q-56 - 165555q-55 - 42543q-54 + 151254q-53 + 271312q-52 + 233769q-51 + 13377q-50 - 249520q-49 - 414572q-48 - 308643q-47 + 46760q-46 + 420480q-45 + 576578q-44 + 343984q-43 - 145228q-42 - 645910q-41 - 753595q-40 - 338824q-39 + 352823q-38 + 902403q-37 + 878082q-36 + 270412q-35 - 643372q-34 - 1182741q-33 - 942447q-32 - 39231q-31 + 986653q-30 + 1396470q-29 + 904710q-28 - 317470q-27 - 1371425q-26 - 1527787q-25 - 639520q-24 + 759338q-23 + 1682298q-22 + 1515191q-21 + 201994q-20 - 1266624q-19 - 1892397q-18 - 1214631q-17 + 352347q-16 + 1696603q-15 + 1921584q-14 + 704085q-13 - 991256q-12 - 2009256q-11 - 1615471q-10 - 55878q-9 + 1547088q-8 + 2110070q-7 + 1076094q-6 - 686020q-5 - 1969547q-4 - 1844533q-3 - 390299q-2 + 1337527q-1 + 2158285 + 1337527q - 390299q2 - 1844533q3 - 1969547q4 - 686020q5 + 1076094q6 + 2110070q7 + 1547088q8 - 55878q9 - 1615471q10 - 2009256q11 - 991256q12 + 704085q13 + 1921584q14 + 1696603q15 + 352347q16 - 1214631q17 - 1892397q18 - 1266624q19 + 201994q20 + 1515191q21 + 1682298q22 + 759338q23 - 639520q24 - 1527787q25 - 1371425q26 - 317470q27 + 904710q28 + 1396470q29 + 986653q30 - 39231q31 - 942447q32 - 1182741q33 - 643372q34 + 270412q35 + 878082q36 + 902403q37 + 352823q38 - 338824q39 - 753595q40 - 645910q41 - 145228q42 + 343984q43 + 576578q44 + 420480q45 + 46760q46 - 308643q47 - 414572q48 - 249520q49 + 13377q50 + 233769q51 + 271312q52 + 151254q53 - 42543q54 - 165555q55 - 162940q56 - 79161q57 + 38455q58 + 104116q59 + 99926q60 + 33402q61 - 30996q62 - 59173q63 - 52800q64 - 14959q65 + 19355q66 + 35863q67 + 23577q68 + 4368q69 - 10354q70 - 17531q71 - 11203q72 - 1329q73 + 7385q74 + 6961q75 + 4033q76 + 420q77 - 3248q78 - 3217q79 - 1619q80 + 876q81 + 1024q82 + 967q83 + 615q84 - 317q85 - 531q86 - 408q87 + 125q88 + 46q89 + 95q90 + 145q91 - 20q92 - 58q93 - 68q94 + 44q95 - 2q96 - 10q97 + 22q98 - 3q99 - 4q100 - 9q101 + 7q102 + 3q103 - 4q104 + q105
7 - q-140 + 4q-139 - 3q-138 - 7q-137 + 9q-136 + 4q-135 + 3q-134 - 17q-133 - 15q-132 + 33q-131 - 8q-130 - 16q-129 + 42q-128 + 30q-127 + 13q-126 - 121q-125 - 168q-124 + 67q-123 + 72q-122 + 153q-121 + 345q-120 + 206q-119 + 28q-118 - 744q-117 - 1273q-116 - 608q-115 + 135q-114 + 1493q-113 + 2823q-112 + 2540q-111 + 1128q-110 - 2911q-109 - 7248q-108 - 7552q-107 - 4466q-106 + 3929q-105 + 14027q-104 + 18818q-103 + 16073q-102 - 110q-101 - 24199q-100 - 41450q-99 - 42981q-98 - 16792q-97 + 30828q-96 + 75952q-95 + 97722q-94 + 66617q-93 - 17353q-92 - 118190q-91 - 190921q-90 - 173528q-89 - 48185q-88 + 141342q-87 + 318844q-86 + 366831q-85 + 218101q-84 - 93530q-83 - 454180q-82 - 657775q-81 - 546567q-80 - 108698q-79 + 519225q-78 + 1018197q-77 + 1077733q-76 + 567378q-75 - 394097q-74 - 1360104q-73 - 1798579q-72 - 1366682q-71 - 78293q-70 + 1520419q-69 + 2618368q-68 + 2535184q-67 + 1042851q-66 - 1289355q-65 - 3349882q-64 - 3995819q-63 - 2580161q-62 + 454017q-61 + 3732829q-60 + 5554146q-59 + 4652596q-58 + 1132131q-57 - 3491647q-56 - 6921359q-55 - 7080887q-54 - 3483098q-53 + 2414596q-52 + 7768501q-51 + 9563059q-50 + 6458604q-49 - 417981q-48 - 7822357q-47 - 11746214q-46 - 9770005q-45 - 2404931q-44 + 6931124q-43 + 13296490q-42 + 13053332q-41 + 5814614q-40 - 5113233q-39 - 14002256q-38 - 15949372q-37 - 9459051q-36 + 2549624q-35 + 13795700q-34 + 18181824q-33 + 12981758q-32 + 470475q-31 - 12777028q-30 - 19616672q-29 - 16076808q-28 - 3614657q-27 + 11154661q-26 + 20259777q-25 + 18557545q-24 + 6592876q-23 - 9195152q-22 - 20238112q-21 - 20364308q-20 - 9198979q-19 + 7151404q-18 + 19740523q-17 + 21549728q-16 + 11338004q-15 - 5213041q-14 - 18966439q-13 - 22240226q-12 - 13018279q-11 + 3484032q-10 + 18080389q-9 + 22588382q-8 + 14321596q-7 - 1979218q-6 - 17180052q-5 - 22733021q-4 - 15371342q-3 + 639284q-2 + 16291800q-1 + 22770653 + 16291800q + 639284q2 - 15371342q3 - 22733021q4 - 17180052q5 - 1979218q6 + 14321596q7 + 22588382q8 + 18080389q9 + 3484032q10 - 13018279q11 - 22240226q12 - 18966439q13 - 5213041q14 + 11338004q15 + 21549728q16 + 19740523q17 + 7151404q18 - 9198979q19 - 20364308q20 - 20238112q21 - 9195152q22 + 6592876q23 + 18557545q24 + 20259777q25 + 11154661q26 - 3614657q27 - 16076808q28 - 19616672q29 - 12777028q30 + 470475q31 + 12981758q32 + 18181824q33 + 13795700q34 + 2549624q35 - 9459051q36 - 15949372q37 - 14002256q38 - 5113233q39 + 5814614q40 + 13053332q41 + 13296490q42 + 6931124q43 - 2404931q44 - 9770005q45 - 11746214q46 - 7822357q47 - 417981q48 + 6458604q49 + 9563059q50 + 7768501q51 + 2414596q52 - 3483098q53 - 7080887q54 - 6921359q55 - 3491647q56 + 1132131q57 + 4652596q58 + 5554146q59 + 3732829q60 + 454017q61 - 2580161q62 - 3995819q63 - 3349882q64 - 1289355q65 + 1042851q66 + 2535184q67 + 2618368q68 + 1520419q69 - 78293q70 - 1366682q71 - 1798579q72 - 1360104q73 - 394097q74 + 567378q75 + 1077733q76 + 1018197q77 + 519225q78 - 108698q79 - 546567q80 - 657775q81 - 454180q82 - 93530q83 + 218101q84 + 366831q85 + 318844q86 + 141342q87 - 48185q88 - 173528q89 - 190921q90 - 118190q91 - 17353q92 + 66617q93 + 97722q94 + 75952q95 + 30828q96 - 16792q97 - 42981q98 - 41450q99 - 24199q100 - 110q101 + 16073q102 + 18818q103 + 14027q104 + 3929q105 - 4466q106 - 7552q107 - 7248q108 - 2911q109 + 1128q110 + 2540q111 + 2823q112 + 1493q113 + 135q114 - 608q115 - 1273q116 - 744q117 + 28q118 + 206q119 + 345q120 + 153q121 + 72q122 + 67q123 - 168q124 - 121q125 + 13q126 + 30q127 + 42q128 - 16q129 - 8q130 + 33q131 - 15q132 - 17q133 + 3q134 + 4q135 + 9q136 - 7q137 - 3q138 + 4q139 - q140


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 88]]
Out[2]=   
PD[X[4, 2, 5, 1], X[20, 14, 1, 13], X[8, 3, 9, 4], X[2, 9, 3, 10], 
 
>   X[14, 7, 15, 8], X[18, 15, 19, 16], X[12, 6, 13, 5], X[10, 18, 11, 17], 
 
>   X[16, 12, 17, 11], X[6, 19, 7, 20]]
In[3]:=
GaussCode[Knot[10, 88]]
Out[3]=   
GaussCode[1, -4, 3, -1, 7, -10, 5, -3, 4, -8, 9, -7, 2, -5, 6, -9, 8, -6, 10, 
 
>   -2]
In[4]:=
DTCode[Knot[10, 88]]
Out[4]=   
DTCode[4, 8, 12, 14, 2, 16, 20, 18, 10, 6]
In[5]:=
br = BR[Knot[10, 88]]
Out[5]=   
BR[5, {-1, 2, -1, -3, 2, -3, 2, 4, -3, 4}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{5, 10}
In[7]:=
BraidIndex[Knot[10, 88]]
Out[7]=   
5
In[8]:=
Show[DrawMorseLink[Knot[10, 88]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 88]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{NegativeAmphicheiral, 1, 3, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 88]][t]
Out[10]=   
      -3   8    24             2    3
35 - t   + -- - -- - 24 t + 8 t  - t
            2   t
           t
In[11]:=
Conway[Knot[10, 88]][z]
Out[11]=   
     2      4    6
1 - z  + 2 z  - z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 88]}
In[13]:=
{KnotDet[Knot[10, 88]], KnotSignature[Knot[10, 88]]}
Out[13]=   
{101, 0}
In[14]:=
Jones[Knot[10, 88]][q]
Out[14]=   
      -5   4    8    13   16              2      3      4    5
17 - q   + -- - -- + -- - -- - 16 q + 13 q  - 8 q  + 4 q  - q
            4    3    2   q
           q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 88]}
In[16]:=
A2Invariant[Knot[10, 88]][q]
Out[16]=   
      -16    -14    2     3    3    2    3       2      4      8      10
-3 - q    + q    + --- - --- + -- - -- + -- + 3 q  - 2 q  + 3 q  - 3 q   + 
                    12    10    8    4    2
                   q     q     q    q    q
 
       12    14    16
>   2 q   + q   - q
In[17]:=
HOMFLYPT[Knot[10, 88]][a, z]
Out[17]=   
                        2      2                               4
      -2    2      2   z    2 z       2  2    4  2      4   2 z       2  4    6
-1 + a   + a  - 3 z  - -- + ---- + 2 a  z  - a  z  - 2 z  + ---- + 2 a  z  - z
                        4     2                               2
                       a     a                               a
In[18]:=
Kauffman[Knot[10, 88]][a, z]
Out[18]=   
                                                    2      2
      -2    2   z    4 z            3        2   3 z    7 z       2  2
-1 - a   - a  - -- - --- - 4 a z - a  z + 8 z  + ---- + ---- + 7 a  z  + 
                 3    a                            4      2
                a                                 a      a
 
               3      3       3                                         4
       4  2   z    6 z    19 z          3      3  3    5  3      4   6 z
>   3 a  z  - -- + ---- + ----- + 19 a z  + 6 a  z  - a  z  - 8 z  - ---- - 
               5     3      a                                          4
              a     a                                                 a
 
        4                         5       5       5
    10 z        2  4      4  4   z    11 z    32 z          5       3  5
>   ----- - 10 a  z  - 6 a  z  + -- - ----- - ----- - 32 a z  - 11 a  z  + 
      2                           5     3       a
     a                           a     a
 
                       6      6                          7       7
     5  5       6   4 z    2 z       2  6      4  6   7 z    14 z          7
>   a  z  - 12 z  + ---- - ---- - 2 a  z  + 4 a  z  + ---- + ----- + 14 a z  + 
                      4      2                          3      a
                     a      a                          a
 
                         8                9
       3  7       8   6 z       2  8   2 z         9
>   7 a  z  + 12 z  + ---- + 6 a  z  + ---- + 2 a z
                        2               a
                       a
In[19]:=
{Vassiliev[2][Knot[10, 88]], Vassiliev[3][Knot[10, 88]]}
Out[19]=   
{-1, 0}
In[20]:=
Kh[Knot[10, 88]][q, t]
Out[20]=   
9           1        3       1       5       3       8       5      8      8
- + 9 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2    3     q t
          q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
               3        3  2      5  2      5  3      7  3    7  4      9  4
>   8 q t + 8 q  t + 5 q  t  + 8 q  t  + 3 q  t  + 5 q  t  + q  t  + 3 q  t  + 
 
     11  5
>   q   t
In[21]:=
ColouredJones[Knot[10, 88], 2][q]
Out[21]=   
       -15    4     3    12    29     7    59   84   12   150   138   65
275 + q    - --- + --- + --- - --- + --- + -- - -- - -- + --- - --- - -- + 
              14    13    12    11    10    9    8    7    6     5     4
             q     q     q     q     q     q    q    q    q     q     q
 
    239   153   123                2        3       4        5        6
>   --- - --- - --- - 123 q - 153 q  + 239 q  - 65 q  - 138 q  + 150 q  - 
     3     2     q
    q     q
 
        7       8       9      10       11       12      13      14    15
>   12 q  - 84 q  + 59 q  + 7 q   - 29 q   + 12 q   + 3 q   - 4 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1088
10.87
1087
10.89
1089