© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1080Visit 1080's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1080's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X5,12,6,13 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X11,6,12,7 X7283 |
Gauss Code: | {-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -4, 8, -7, 5, -6, 4, -8, 7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 12 2 16 6 18 20 10 14 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 3t-3 - 9t-2 + 15t-1 - 17 + 15t - 9t2 + 3t3 |
Conway Polynomial: | 1 + 6z2 + 9z4 + 3z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {71, -6} |
Jones Polynomial: | q-13 - 3q-12 + 6q-11 - 10q-10 + 11q-9 - 12q-8 + 11q-7 - 8q-6 + 6q-5 - 2q-4 + q-3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-40 + q-38 - q-36 + q-34 - 3q-32 - 2q-30 - q-28 - 3q-26 + 3q-24 - q-22 + 3q-20 + 2q-18 + 3q-14 - q-12 + q-10 |
HOMFLY-PT Polynomial: | 2a6 + 5a6z2 + 4a6z4 + a6z6 + 3a8 + 9a8z2 + 8a8z4 + 2a8z6 - 6a10 - 9a10z2 - 3a10z4 + 2a12 + a12z2 |
Kauffman Polynomial: | - 2a6 + 5a6z2 - 4a6z4 + a6z6 + a7z + 2a7z3 - 5a7z5 + 2a7z7 + 3a8 - 7a8z2 + 8a8z4 - 8a8z6 + 3a8z8 - 8a9z + 22a9z3 - 23a9z5 + 6a9z7 + a9z9 + 6a10 - 13a10z2 + 13a10z4 - 15a10z6 + 7a10z8 - 12a11z + 29a11z3 - 29a11z5 + 10a11z7 + a11z9 + 2a12 + 2a12z2 - 5a12z4 - a12z6 + 4a12z8 - 2a13z + 6a13z3 - 8a13z5 + 6a13z7 + 2a14z2 - 5a14z4 + 5a14z6 + a15z - 3a15z3 + 3a15z5 - a16z2 + a16z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {6, -12} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-6 is the signature of 1080. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-36 - 3q-35 + 2q-34 + 6q-33 - 17q-32 + 11q-31 + 23q-30 - 51q-29 + 21q-28 + 58q-27 - 93q-26 + 20q-25 + 95q-24 - 114q-23 + 4q-22 + 112q-21 - 103q-20 - 17q-19 + 103q-18 - 68q-17 - 30q-16 + 71q-15 - 28q-14 - 27q-13 + 33q-12 - 4q-11 - 12q-10 + 8q-9 + q-8 - 2q-7 + q-6 |
3 | q-69 - 3q-68 + 2q-67 + 2q-66 - q-65 - 8q-64 + 8q-63 + 15q-62 - 20q-61 - 29q-60 + 40q-59 + 57q-58 - 68q-57 - 107q-56 + 101q-55 + 183q-54 - 135q-53 - 272q-52 + 137q-51 + 395q-50 - 140q-49 - 490q-48 + 94q-47 + 589q-46 - 51q-45 - 635q-44 - 25q-43 + 666q-42 + 89q-41 - 649q-40 - 160q-39 + 608q-38 + 224q-37 - 543q-36 - 272q-35 + 449q-34 + 320q-33 - 361q-32 - 322q-31 + 237q-30 + 327q-29 - 149q-28 - 278q-27 + 47q-26 + 235q-25 - 154q-23 - 48q-22 + 106q-21 + 41q-20 - 46q-19 - 40q-18 + 23q-17 + 21q-16 - 4q-15 - 12q-14 + 3q-13 + 3q-12 + q-11 - 2q-10 + q-9 |
4 | q-112 - 3q-111 + 2q-110 + 2q-109 - 5q-108 + 8q-107 - 11q-106 + 10q-105 + 5q-104 - 30q-103 + 28q-102 - 18q-101 + 46q-100 + 8q-99 - 130q-98 + 40q-97 + 12q-96 + 203q-95 + 42q-94 - 416q-93 - 93q-92 + 64q-91 + 674q-90 + 309q-89 - 925q-88 - 645q-87 - 101q-86 + 1516q-85 + 1130q-84 - 1345q-83 - 1654q-82 - 852q-81 + 2321q-80 + 2480q-79 - 1209q-78 - 2635q-77 - 2118q-76 + 2547q-75 + 3752q-74 - 492q-73 - 3008q-72 - 3331q-71 + 2115q-70 + 4375q-69 + 388q-68 - 2697q-67 - 4028q-66 + 1340q-65 + 4274q-64 + 1124q-63 - 1953q-62 - 4181q-61 + 445q-60 + 3659q-59 + 1680q-58 - 967q-57 - 3885q-56 - 487q-55 + 2639q-54 + 2001q-53 + 145q-52 - 3118q-51 - 1243q-50 + 1329q-49 + 1853q-48 + 1079q-47 - 1910q-46 - 1454q-45 + 96q-44 + 1157q-43 + 1409q-42 - 663q-41 - 1014q-40 - 547q-39 + 306q-38 + 1042q-37 + 72q-36 - 346q-35 - 501q-34 - 162q-33 + 446q-32 + 186q-31 + 30q-30 - 198q-29 - 178q-28 + 95q-27 + 65q-26 + 71q-25 - 29q-24 - 66q-23 + 10q-22 + 2q-21 + 23q-20 + 2q-19 - 13q-18 + 3q-17 - 2q-16 + 3q-15 + q-14 - 2q-13 + q-12 |
5 | q-165 - 3q-164 + 2q-163 + 2q-162 - 5q-161 + 4q-160 + 5q-159 - 9q-158 + 5q-156 - 14q-155 + 10q-154 + 28q-153 - 8q-152 - 23q-151 - 29q-150 - 34q-149 + 42q-148 + 124q-147 + 79q-146 - 94q-145 - 250q-144 - 230q-143 + 106q-142 + 529q-141 + 571q-140 - 51q-139 - 966q-138 - 1223q-137 - 229q-136 + 1508q-135 + 2362q-134 + 981q-133 - 2062q-132 - 4066q-131 - 2445q-130 + 2323q-129 + 6265q-128 + 4889q-127 - 1959q-126 - 8673q-125 - 8363q-124 + 539q-123 + 10972q-122 + 12596q-121 + 2016q-120 - 12414q-119 - 17207q-118 - 5870q-117 + 12956q-116 + 21512q-115 + 10274q-114 - 11960q-113 - 24980q-112 - 15129q-111 + 10069q-110 + 27214q-109 + 19354q-108 - 7181q-107 - 28067q-106 - 22979q-105 + 4154q-104 + 27760q-103 + 25343q-102 - 1020q-101 - 26529q-100 - 26836q-99 - 1680q-98 + 24699q-97 + 27344q-96 + 4155q-95 - 22483q-94 - 27310q-93 - 6296q-92 + 19975q-91 + 26751q-90 + 8352q-89 - 17131q-88 - 25821q-87 - 10390q-86 + 13933q-85 + 24470q-84 + 12272q-83 - 10256q-82 - 22458q-81 - 14086q-80 + 6267q-79 + 19868q-78 + 15203q-77 - 2091q-76 - 16305q-75 - 15744q-74 - 1888q-73 + 12355q-72 + 14955q-71 + 5219q-70 - 7784q-69 - 13298q-68 - 7489q-67 + 3609q-66 + 10422q-65 + 8421q-64 + 170q-63 - 7264q-62 - 7995q-61 - 2604q-60 + 3830q-59 + 6550q-58 + 4003q-57 - 1224q-56 - 4525q-55 - 3951q-54 - 766q-53 + 2484q-52 + 3359q-51 + 1524q-50 - 896q-49 - 2145q-48 - 1702q-47 - 131q-46 + 1214q-45 + 1274q-44 + 508q-43 - 395q-42 - 823q-41 - 545q-40 + 48q-39 + 376q-38 + 381q-37 + 126q-36 - 153q-35 - 214q-34 - 92q-33 + 9q-32 + 94q-31 + 79q-30 + q-29 - 39q-28 - 17q-27 - 17q-26 + 5q-25 + 20q-24 + 3q-23 - 7q-22 + 2q-21 - 2q-20 - 2q-19 + 3q-18 + q-17 - 2q-16 + q-15 |
6 | q-228 - 3q-227 + 2q-226 + 2q-225 - 5q-224 + 4q-223 + q-222 + 7q-221 - 19q-220 + 21q-218 - 22q-217 + 15q-216 + 14q-215 + 18q-214 - 71q-213 - 30q-212 + 71q-211 - 31q-210 + 71q-209 + 85q-208 + 34q-207 - 270q-206 - 220q-205 + 111q-204 + 26q-203 + 419q-202 + 505q-201 + 183q-200 - 890q-199 - 1203q-198 - 412q-197 + 20q-196 + 1748q-195 + 2573q-194 + 1578q-193 - 1945q-192 - 4536q-191 - 3949q-190 - 1926q-189 + 4402q-188 + 9270q-187 + 8545q-186 - 586q-185 - 11188q-184 - 15584q-183 - 12619q-182 + 4240q-181 + 22358q-180 + 28872q-179 + 12999q-178 - 15340q-177 - 37820q-176 - 42600q-175 - 11911q-174 + 33763q-173 + 65110q-172 + 51631q-171 - 266q-170 - 59535q-169 - 93143q-168 - 58221q-167 + 23230q-166 + 101941q-165 + 113847q-164 + 48484q-163 - 57173q-162 - 143829q-161 - 129229q-160 - 22997q-159 + 112632q-158 + 174229q-157 + 121201q-156 - 18423q-155 - 165771q-154 - 195465q-153 - 91437q-152 + 86451q-151 + 203544q-150 + 186513q-149 + 40685q-148 - 150503q-147 - 229384q-146 - 151162q-145 + 40424q-144 + 196390q-143 + 220603q-142 + 91816q-141 - 115272q-140 - 228998q-139 - 183335q-138 - 1170q-137 + 169705q-136 + 224952q-135 + 121623q-134 - 80100q-133 - 210457q-132 - 192429q-131 - 30031q-130 + 139486q-129 + 214526q-128 + 136763q-127 - 49336q-126 - 186057q-125 - 191824q-124 - 53884q-123 + 107147q-122 + 198150q-121 + 148440q-120 - 15210q-119 - 154700q-118 - 186771q-117 - 81111q-116 + 65196q-115 + 172030q-114 + 157840q-113 + 27591q-112 - 108664q-111 - 170090q-110 - 108362q-109 + 10843q-108 + 127270q-107 + 153696q-106 + 71245q-105 - 46846q-104 - 130841q-103 - 119857q-102 - 44277q-101 + 63685q-100 + 122768q-99 + 95843q-98 + 15833q-97 - 69625q-96 - 100285q-95 - 77001q-94 - 907q-93 + 66914q-92 + 85123q-91 + 53714q-90 - 7204q-89 - 53396q-88 - 71461q-87 - 39229q-86 + 9834q-85 + 45719q-84 + 52431q-83 + 28402q-82 - 5435q-81 - 37853q-80 - 39416q-79 - 20827q-78 + 5859q-77 + 25578q-76 + 28626q-75 + 17736q-74 - 5285q-73 - 17888q-72 - 20292q-71 - 11545q-70 + 1384q-69 + 11758q-68 + 15251q-67 + 7345q-66 - 401q-65 - 7421q-64 - 8961q-63 - 6123q-62 - 221q-61 + 5151q-60 + 5097q-59 + 3854q-58 + 354q-57 - 2259q-56 - 3576q-55 - 2344q-54 + 41q-53 + 970q-52 + 1853q-51 + 1277q-50 + 387q-49 - 777q-48 - 945q-47 - 464q-46 - 275q-45 + 291q-44 + 418q-43 + 382q-42 - 15q-41 - 145q-40 - 94q-39 - 166q-38 - 27q-37 + 46q-36 + 107q-35 + 11q-34 - 10q-33 + 12q-32 - 33q-31 - 15q-30 - 4q-29 + 22q-28 - 6q-26 + 8q-25 - 3q-24 - 2q-23 - 2q-22 + 3q-21 + q-20 - 2q-19 + q-18 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 80]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[13, 18, 14, 19], > X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1], X[19, 14, 20, 15], > X[11, 6, 12, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 80]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -4, 8, -7, 5, -6, 4, -8, > 7] |
In[4]:= | DTCode[Knot[10, 80]] |
Out[4]= | DTCode[4, 8, 12, 2, 16, 6, 18, 20, 10, 14] |
In[5]:= | br = BR[Knot[10, 80]] |
Out[5]= | BR[4, {-1, -1, -1, 2, -1, -1, -3, -2, -2, -2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 80]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 80]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 80]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 3, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 80]][t] |
Out[10]= | 3 9 15 2 3 -17 + -- - -- + -- + 15 t - 9 t + 3 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 80]][z] |
Out[11]= | 2 4 6 1 + 6 z + 9 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 80]} |
In[13]:= | {KnotDet[Knot[10, 80]], KnotSignature[Knot[10, 80]]} |
Out[13]= | {71, -6} |
In[14]:= | Jones[Knot[10, 80]][q] |
Out[14]= | -13 3 6 10 11 12 11 8 6 2 -3 q - --- + --- - --- + -- - -- + -- - -- + -- - -- + q 12 11 10 9 8 7 6 5 4 q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 80]} |
In[16]:= | A2Invariant[Knot[10, 80]][q] |
Out[16]= | -40 -38 -36 -34 3 2 -28 3 3 -22 3 2 q + q - q + q - --- - --- - q - --- + --- - q + --- + --- + 32 30 26 24 20 18 q q q q q q 3 -12 -10 > --- - q + q 14 q |
In[17]:= | HOMFLYPT[Knot[10, 80]][a, z] |
Out[17]= | 6 8 10 12 6 2 8 2 10 2 12 2 6 4 2 a + 3 a - 6 a + 2 a + 5 a z + 9 a z - 9 a z + a z + 4 a z + 8 4 10 4 6 6 8 6 > 8 a z - 3 a z + a z + 2 a z |
In[18]:= | Kauffman[Knot[10, 80]][a, z] |
Out[18]= | 6 8 10 12 7 9 11 13 15 -2 a + 3 a + 6 a + 2 a + a z - 8 a z - 12 a z - 2 a z + a z + 6 2 8 2 10 2 12 2 14 2 16 2 7 3 > 5 a z - 7 a z - 13 a z + 2 a z + 2 a z - a z + 2 a z + 9 3 11 3 13 3 15 3 6 4 8 4 > 22 a z + 29 a z + 6 a z - 3 a z - 4 a z + 8 a z + 10 4 12 4 14 4 16 4 7 5 9 5 11 5 > 13 a z - 5 a z - 5 a z + a z - 5 a z - 23 a z - 29 a z - 13 5 15 5 6 6 8 6 10 6 12 6 14 6 > 8 a z + 3 a z + a z - 8 a z - 15 a z - a z + 5 a z + 7 7 9 7 11 7 13 7 8 8 10 8 12 8 > 2 a z + 6 a z + 10 a z + 6 a z + 3 a z + 7 a z + 4 a z + 9 9 11 9 > a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 80]], Vassiliev[3][Knot[10, 80]]} |
Out[19]= | {6, -12} |
In[20]:= | Kh[Knot[10, 80]][q, t] |
Out[20]= | -7 -5 1 2 1 4 2 6 4 q + q + ------- + ------ + ------ + ------ + ------ + ------ + ------ + 27 10 25 9 23 9 23 8 21 8 21 7 19 7 q t q t q t q t q t q t q t 5 6 7 5 4 7 4 4 > ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 19 6 17 6 17 5 15 5 15 4 13 4 13 3 11 3 q t q t q t q t q t q t q t q t 2 4 2 > ------ + ----- + ---- 11 2 9 2 7 q t q t q t |
In[21]:= | ColouredJones[Knot[10, 80], 2][q] |
Out[21]= | -36 3 2 6 17 11 23 51 21 58 93 20 95 q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + --- - 35 34 33 32 31 30 29 28 27 26 25 24 q q q q q q q q q q q q 114 4 112 103 17 103 68 30 71 28 27 33 > --- + --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 23 22 21 20 19 18 17 16 15 14 13 12 q q q q q q q q q q q q 4 12 8 -8 2 -6 > --- - --- + -- + q - -- + q 11 10 9 7 q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1080 |
|