© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.78
1078
10.80
1080
    10.79
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 1079   

Visit 1079's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 1079's page at Knotilus!

Acknowledgement

10.79
KnotPlot

PD Presentation: X6271 X8493 X12,6,13,5 X18,13,19,14 X16,9,17,10 X10,17,11,18 X20,15,1,16 X14,19,15,20 X2837 X4,12,5,11

Gauss Code: {1, -9, 2, -10, 3, -1, 9, -2, 5, -6, 10, -3, 4, -8, 7, -5, 6, -4, 8, -7}

DT (Dowker-Thistlethwaite) Code: 6 8 12 2 16 4 18 20 10 14

Minimum Braid Representative:


Length is 10, width is 3
Braid index is 3

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
NegativeAmphicheiral 2--3 4 3 / NotAvailable 1

Alexander Polynomial: t-4 - 3t-3 + 7t-2 - 12t-1 + 15 - 12t + 7t2 - 3t3 + t4

Conway Polynomial: 1 + 5z2 + 9z4 + 5z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {61, 0}

Jones Polynomial: - q-5 + 2q-4 - 5q-3 + 8q-2 - 9q-1 + 11 - 9q + 8q2 - 5q3 + 2q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-14 - 3q-10 + 5q-2 + 1 + 5q2 - 3q10 - q14

HOMFLY-PT Polynomial: - 5a-2 - 9a-2z2 - 5a-2z4 - a-2z6 + 11 + 23z2 + 19z4 + 7z6 + z8 - 5a2 - 9a2z2 - 5a2z4 - a2z6

Kauffman Polynomial: 2a-5z - 3a-5z3 + a-5z5 + a-4z2 - 4a-4z4 + 2a-4z6 - 2a-3z + 4a-3z3 - 6a-3z5 + 3a-3z7 + 5a-2 - 13a-2z2 + 12a-2z4 - 7a-2z6 + 3a-2z8 - 11a-1z + 22a-1z3 - 15a-1z5 + 4a-1z7 + a-1z9 + 11 - 28z2 + 32z4 - 18z6 + 6z8 - 11az + 22az3 - 15az5 + 4az7 + az9 + 5a2 - 13a2z2 + 12a2z4 - 7a2z6 + 3a2z8 - 2a3z + 4a3z3 - 6a3z5 + 3a3z7 + a4z2 - 4a4z4 + 2a4z6 + 2a5z - 3a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {5, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1079. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11          1
j = 9         1 
j = 7        41 
j = 5       41  
j = 3      54   
j = 1     64    
j = -1    46     
j = -3   45      
j = -5  14       
j = -7 14        
j = -9 1         
j = -111          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-15 - 2q-14 + q-13 + 5q-12 - 11q-11 + 2q-10 + 21q-9 - 30q-8 - 5q-7 + 53q-6 - 48q-5 - 24q-4 + 85q-3 - 53q-2 - 44q-1 + 99 - 44q - 53q2 + 85q3 - 24q4 - 48q5 + 53q6 - 5q7 - 30q8 + 21q9 + 2q10 - 11q11 + 5q12 + q13 - 2q14 + q15
3 - q-30 + 2q-29 - q-28 - q-27 - q-26 + 7q-25 - 3q-24 - 10q-23 + q-22 + 27q-21 - 4q-20 - 43q-19 - 13q-18 + 80q-17 + 31q-16 - 107q-15 - 80q-14 + 135q-13 + 143q-12 - 152q-11 - 212q-10 + 143q-9 + 291q-8 - 131q-7 - 348q-6 + 90q-5 + 412q-4 - 67q-3 - 427q-2 + 12q-1 + 455 + 12q - 427q2 - 67q3 + 412q4 + 90q5 - 348q6 - 131q7 + 291q8 + 143q9 - 212q10 - 152q11 + 143q12 + 135q13 - 80q14 - 107q15 + 31q16 + 80q17 - 13q18 - 43q19 - 4q20 + 27q21 + q22 - 10q23 - 3q24 + 7q25 - q26 - q27 - q28 + 2q29 - q30
4 q-50 - 2q-49 + q-48 + q-47 - 3q-46 + 5q-45 - 7q-44 + 5q-43 + 6q-42 - 16q-41 + 11q-40 - 18q-39 + 23q-38 + 33q-37 - 47q-36 - 5q-35 - 70q-34 + 66q-33 + 141q-32 - 41q-31 - 50q-30 - 274q-29 + 32q-28 + 353q-27 + 159q-26 + 37q-25 - 655q-24 - 296q-23 + 451q-22 + 578q-21 + 521q-20 - 952q-19 - 932q-18 + 150q-17 + 937q-16 + 1362q-15 - 873q-14 - 1548q-13 - 507q-12 + 973q-11 + 2200q-10 - 474q-9 - 1867q-8 - 1182q-7 + 733q-6 + 2731q-5 - 11q-4 - 1872q-3 - 1645q-2 + 386q-1 + 2903 + 386q - 1645q2 - 1872q3 - 11q4 + 2731q5 + 733q6 - 1182q7 - 1867q8 - 474q9 + 2200q10 + 973q11 - 507q12 - 1548q13 - 873q14 + 1362q15 + 937q16 + 150q17 - 932q18 - 952q19 + 521q20 + 578q21 + 451q22 - 296q23 - 655q24 + 37q25 + 159q26 + 353q27 + 32q28 - 274q29 - 50q30 - 41q31 + 141q32 + 66q33 - 70q34 - 5q35 - 47q36 + 33q37 + 23q38 - 18q39 + 11q40 - 16q41 + 6q42 + 5q43 - 7q44 + 5q45 - 3q46 + q47 + q48 - 2q49 + q50
5 - q-75 + 2q-74 - q-73 - q-72 + 3q-71 - q-70 - 5q-69 + 5q-68 - 4q-66 + 10q-65 + 3q-64 - 19q-63 - 2q-62 - q-61 + 36q-59 + 33q-58 - 30q-57 - 58q-56 - 65q-55 - 26q-54 + 115q-53 + 184q-52 + 82q-51 - 116q-50 - 321q-49 - 320q-48 + 55q-47 + 496q-46 + 623q-45 + 264q-44 - 531q-43 - 1137q-42 - 802q-41 + 331q-40 + 1510q-39 + 1710q-38 + 371q-37 - 1752q-36 - 2759q-35 - 1527q-34 + 1389q-33 + 3772q-32 + 3240q-31 - 423q-30 - 4456q-29 - 5166q-28 - 1245q-27 + 4500q-26 + 7083q-25 + 3498q-24 - 3903q-23 - 8681q-22 - 5933q-21 + 2616q-20 + 9688q-19 + 8440q-18 - 956q-17 - 10187q-16 - 10475q-15 - 962q-14 + 10093q-13 + 12223q-12 + 2709q-11 - 9719q-10 - 13272q-9 - 4355q-8 + 9034q-7 + 14136q-6 + 5574q-5 - 8372q-4 - 14366q-3 - 6711q-2 + 7511q-1 + 14645 + 7511q - 6711q2 - 14366q3 - 8372q4 + 5574q5 + 14136q6 + 9034q7 - 4355q8 - 13272q9 - 9719q10 + 2709q11 + 12223q12 + 10093q13 - 962q14 - 10475q15 - 10187q16 - 956q17 + 8440q18 + 9688q19 + 2616q20 - 5933q21 - 8681q22 - 3903q23 + 3498q24 + 7083q25 + 4500q26 - 1245q27 - 5166q28 - 4456q29 - 423q30 + 3240q31 + 3772q32 + 1389q33 - 1527q34 - 2759q35 - 1752q36 + 371q37 + 1710q38 + 1510q39 + 331q40 - 802q41 - 1137q42 - 531q43 + 264q44 + 623q45 + 496q46 + 55q47 - 320q48 - 321q49 - 116q50 + 82q51 + 184q52 + 115q53 - 26q54 - 65q55 - 58q56 - 30q57 + 33q58 + 36q59 - q61 - 2q62 - 19q63 + 3q64 + 10q65 - 4q66 + 5q68 - 5q69 - q70 + 3q71 - q72 - q73 + 2q74 - q75
6 q-105 - 2q-104 + q-103 + q-102 - 3q-101 + q-100 + q-99 + 7q-98 - 10q-97 - 2q-96 + 9q-95 - 11q-94 + 2q-93 + 7q-92 + 28q-91 - 24q-90 - 25q-89 + 15q-88 - 34q-87 + 35q-85 + 112q-84 - 13q-83 - 74q-82 - 26q-81 - 167q-80 - 88q-79 + 64q-78 + 381q-77 + 228q-76 + 32q-75 - 53q-74 - 602q-73 - 662q-72 - 338q-71 + 671q-70 + 970q-69 + 1015q-68 + 792q-67 - 858q-66 - 2037q-65 - 2377q-64 - 558q-63 + 1092q-62 + 3075q-61 + 4281q-60 + 1713q-59 - 2051q-58 - 5863q-57 - 5626q-56 - 3482q-55 + 2486q-54 + 9325q-53 + 9897q-52 + 4979q-51 - 5026q-50 - 12051q-49 - 15616q-48 - 7985q-47 + 7805q-46 + 19382q-45 + 21416q-44 + 8559q-43 - 9501q-42 - 28770q-41 - 29573q-40 - 9214q-39 + 18063q-38 + 38427q-37 + 34429q-36 + 10439q-35 - 29717q-34 - 51274q-33 - 39049q-32 - 1253q-31 + 42472q-30 + 59898q-29 + 42619q-28 - 13042q-27 - 59892q-26 - 67753q-25 - 31400q-24 + 30032q-23 + 72651q-22 + 72550q-21 + 12770q-20 - 53480q-19 - 84155q-18 - 58447q-17 + 9989q-16 + 71898q-15 + 90602q-14 + 35273q-13 - 40401q-12 - 88276q-11 - 74856q-10 - 7328q-9 + 64968q-8 + 97593q-7 + 49272q-6 - 28571q-5 - 86374q-4 - 82476q-3 - 18968q-2 + 57604q-1 + 99005 + 57604q - 18968q2 - 82476q3 - 86374q4 - 28571q5 + 49272q6 + 97593q7 + 64968q8 - 7328q9 - 74856q10 - 88276q11 - 40401q12 + 35273q13 + 90602q14 + 71898q15 + 9989q16 - 58447q17 - 84155q18 - 53480q19 + 12770q20 + 72550q21 + 72651q22 + 30032q23 - 31400q24 - 67753q25 - 59892q26 - 13042q27 + 42619q28 + 59898q29 + 42472q30 - 1253q31 - 39049q32 - 51274q33 - 29717q34 + 10439q35 + 34429q36 + 38427q37 + 18063q38 - 9214q39 - 29573q40 - 28770q41 - 9501q42 + 8559q43 + 21416q44 + 19382q45 + 7805q46 - 7985q47 - 15616q48 - 12051q49 - 5026q50 + 4979q51 + 9897q52 + 9325q53 + 2486q54 - 3482q55 - 5626q56 - 5863q57 - 2051q58 + 1713q59 + 4281q60 + 3075q61 + 1092q62 - 558q63 - 2377q64 - 2037q65 - 858q66 + 792q67 + 1015q68 + 970q69 + 671q70 - 338q71 - 662q72 - 602q73 - 53q74 + 32q75 + 228q76 + 381q77 + 64q78 - 88q79 - 167q80 - 26q81 - 74q82 - 13q83 + 112q84 + 35q85 - 34q87 + 15q88 - 25q89 - 24q90 + 28q91 + 7q92 + 2q93 - 11q94 + 9q95 - 2q96 - 10q97 + 7q98 + q99 + q100 - 3q101 + q102 + q103 - 2q104 + q105
7 - q-140 + 2q-139 - q-138 - q-137 + 3q-136 - q-135 - q-134 - 3q-133 - 2q-132 + 12q-131 - 3q-130 - 8q-129 + 7q-128 - 3q-127 - q-126 - 12q-125 - 10q-124 + 45q-123 + 11q-122 - 21q-121 - q-120 - 27q-119 - 6q-118 - 43q-117 - 39q-116 + 124q-115 + 102q-114 + 33q-113 + 4q-112 - 129q-111 - 116q-110 - 214q-109 - 212q-108 + 219q-107 + 398q-106 + 465q-105 + 379q-104 - 129q-103 - 434q-102 - 963q-101 - 1195q-100 - 334q-99 + 576q-98 + 1633q-97 + 2262q-96 + 1491q-95 + 275q-94 - 1996q-93 - 4083q-92 - 3891q-91 - 2340q-90 + 1273q-89 + 5489q-88 + 7372q-87 + 6927q-86 + 2127q-85 - 5346q-84 - 10976q-83 - 13790q-82 - 9783q-81 + 675q-80 + 12280q-79 + 22019q-78 + 22128q-77 + 10764q-76 - 7003q-75 - 27320q-74 - 37935q-73 - 31183q-72 - 8944q-71 + 24729q-70 + 52041q-69 + 58145q-68 + 38820q-67 - 6602q-66 - 56918q-65 - 87316q-64 - 81709q-63 - 30662q-62 + 43870q-61 + 108006q-60 + 131582q-59 + 88820q-58 - 5449q-57 - 110563q-56 - 178746q-55 - 161426q-54 - 59774q-53 + 85085q-52 + 209955q-51 + 238590q-50 + 148394q-49 - 28036q-48 - 215295q-47 - 307035q-46 - 249368q-45 - 57689q-44 + 188369q-43 + 354197q-42 + 349946q-41 + 163581q-40 - 130500q-39 - 373356q-38 - 436960q-37 - 275780q-36 + 48810q-35 + 362085q-34 + 501111q-33 + 382490q-32 + 45578q-31 - 326281q-30 - 538813q-29 - 472292q-28 - 140463q-27 + 273206q-26 + 551729q-25 + 540897q-24 + 226027q-23 - 214004q-22 - 545455q-21 - 586355q-20 - 296298q-19 + 155968q-18 + 527435q-17 + 613307q-16 + 349033q-15 - 106339q-14 - 504324q-13 - 625272q-12 - 386210q-11 + 65682q-10 + 481641q-9 + 629916q-8 + 411290q-7 - 35563q-6 - 461732q-5 - 629573q-4 - 429427q-3 + 10614q-2 + 445007q-1 + 630069 + 445007q + 10614q2 - 429427q3 - 629573q4 - 461732q5 - 35563q6 + 411290q7 + 629916q8 + 481641q9 + 65682q10 - 386210q11 - 625272q12 - 504324q13 - 106339q14 + 349033q15 + 613307q16 + 527435q17 + 155968q18 - 296298q19 - 586355q20 - 545455q21 - 214004q22 + 226027q23 + 540897q24 + 551729q25 + 273206q26 - 140463q27 - 472292q28 - 538813q29 - 326281q30 + 45578q31 + 382490q32 + 501111q33 + 362085q34 + 48810q35 - 275780q36 - 436960q37 - 373356q38 - 130500q39 + 163581q40 + 349946q41 + 354197q42 + 188369q43 - 57689q44 - 249368q45 - 307035q46 - 215295q47 - 28036q48 + 148394q49 + 238590q50 + 209955q51 + 85085q52 - 59774q53 - 161426q54 - 178746q55 - 110563q56 - 5449q57 + 88820q58 + 131582q59 + 108006q60 + 43870q61 - 30662q62 - 81709q63 - 87316q64 - 56918q65 - 6602q66 + 38820q67 + 58145q68 + 52041q69 + 24729q70 - 8944q71 - 31183q72 - 37935q73 - 27320q74 - 7003q75 + 10764q76 + 22128q77 + 22019q78 + 12280q79 + 675q80 - 9783q81 - 13790q82 - 10976q83 - 5346q84 + 2127q85 + 6927q86 + 7372q87 + 5489q88 + 1273q89 - 2340q90 - 3891q91 - 4083q92 - 1996q93 + 275q94 + 1491q95 + 2262q96 + 1633q97 + 576q98 - 334q99 - 1195q100 - 963q101 - 434q102 - 129q103 + 379q104 + 465q105 + 398q106 + 219q107 - 212q108 - 214q109 - 116q110 - 129q111 + 4q112 + 33q113 + 102q114 + 124q115 - 39q116 - 43q117 - 6q118 - 27q119 - q120 - 21q121 + 11q122 + 45q123 - 10q124 - 12q125 - q126 - 3q127 + 7q128 - 8q129 - 3q130 + 12q131 - 2q132 - 3q133 - q134 - q135 + 3q136 - q137 - q138 + 2q139 - q140


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 79]]
Out[2]=   
PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[18, 13, 19, 14], 
 
>   X[16, 9, 17, 10], X[10, 17, 11, 18], X[20, 15, 1, 16], X[14, 19, 15, 20], 
 
>   X[2, 8, 3, 7], X[4, 12, 5, 11]]
In[3]:=
GaussCode[Knot[10, 79]]
Out[3]=   
GaussCode[1, -9, 2, -10, 3, -1, 9, -2, 5, -6, 10, -3, 4, -8, 7, -5, 6, -4, 8, 
 
>   -7]
In[4]:=
DTCode[Knot[10, 79]]
Out[4]=   
DTCode[6, 8, 12, 2, 16, 4, 18, 20, 10, 14]
In[5]:=
br = BR[Knot[10, 79]]
Out[5]=   
BR[3, {-1, -1, -1, 2, 2, -1, -1, 2, 2, 2}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{3, 10}
In[7]:=
BraidIndex[Knot[10, 79]]
Out[7]=   
3
In[8]:=
Show[DrawMorseLink[Knot[10, 79]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 79]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{NegativeAmphicheiral, {2, 3}, 4, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 79]][t]
Out[10]=   
      -4   3    7    12             2      3    4
15 + t   - -- + -- - -- - 12 t + 7 t  - 3 t  + t
            3    2   t
           t    t
In[11]:=
Conway[Knot[10, 79]][z]
Out[11]=   
       2      4      6    8
1 + 5 z  + 9 z  + 5 z  + z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 79]}
In[13]:=
{KnotDet[Knot[10, 79]], KnotSignature[Knot[10, 79]]}
Out[13]=   
{61, 0}
In[14]:=
Jones[Knot[10, 79]][q]
Out[14]=   
      -5   2    5    8    9            2      3      4    5
11 - q   + -- - -- + -- - - - 9 q + 8 q  - 5 q  + 2 q  - q
            4    3    2   q
           q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 79]}
In[16]:=
A2Invariant[Knot[10, 79]][q]
Out[16]=   
     -14    3    5       2      10    14
1 - q    - --- + -- + 5 q  - 3 q   - q
            10    2
           q     q
In[17]:=
HOMFLYPT[Knot[10, 79]][a, z]
Out[17]=   
                            2                        4                     6
     5       2       2   9 z       2  2       4   5 z       2  4      6   z
11 - -- - 5 a  + 23 z  - ---- - 9 a  z  + 19 z  - ---- - 5 a  z  + 7 z  - -- - 
      2                    2                        2                      2
     a                    a                        a                      a
 
     2  6    8
>   a  z  + z
In[18]:=
Kauffman[Knot[10, 79]][a, z]
Out[18]=   
                                                                        2
     5       2   2 z   2 z   11 z               3        5         2   z
11 + -- + 5 a  + --- - --- - ---- - 11 a z - 2 a  z + 2 a  z - 28 z  + -- - 
      2           5     3     a                                         4
     a           a     a                                               a
 
        2                         3      3       3
    13 z        2  2    4  2   3 z    4 z    22 z          3      3  3
>   ----- - 13 a  z  + a  z  - ---- + ---- + ----- + 22 a z  + 4 a  z  - 
      2                          5      3      a
     a                          a      a
 
                         4       4                         5      5       5
       5  3       4   4 z    12 z        2  4      4  4   z    6 z    15 z
>   3 a  z  + 32 z  - ---- + ----- + 12 a  z  - 4 a  z  + -- - ---- - ----- - 
                        4      2                           5     3      a
                       a      a                           a     a
 
                                           6      6
          5      3  5    5  5       6   2 z    7 z       2  6      4  6
>   15 a z  - 6 a  z  + a  z  - 18 z  + ---- - ---- - 7 a  z  + 2 a  z  + 
                                          4      2
                                         a      a
 
       7      7                                8              9
    3 z    4 z         7      3  7      8   3 z       2  8   z       9
>   ---- + ---- + 4 a z  + 3 a  z  + 6 z  + ---- + 3 a  z  + -- + a z
      3     a                                 2              a
     a                                       a
In[19]:=
{Vassiliev[2][Knot[10, 79]], Vassiliev[3][Knot[10, 79]]}
Out[19]=   
{5, 0}
In[20]:=
Kh[Knot[10, 79]][q, t]
Out[20]=   
6           1        1       1       4       1       4       4      5      4
- + 6 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2    3     q t
          q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
               3        3  2      5  2    5  3      7  3    7  4    9  4
>   4 q t + 5 q  t + 4 q  t  + 4 q  t  + q  t  + 4 q  t  + q  t  + q  t  + 
 
     11  5
>   q   t
In[21]:=
ColouredJones[Knot[10, 79], 2][q]
Out[21]=   
      -15    2     -13    5    11     2    21   30   5    53   48   24   85
99 + q    - --- + q    + --- - --- + --- + -- - -- - -- + -- - -- - -- + -- - 
             14           12    11    10    9    8    7    6    5    4    3
            q            q     q     q     q    q    q    q    q    q    q
 
    53   44              2       3       4       5       6      7       8
>   -- - -- - 44 q - 53 q  + 85 q  - 24 q  - 48 q  + 53 q  - 5 q  - 30 q  + 
     2   q
    q
 
        9      10       11      12    13      14    15
>   21 q  + 2 q   - 11 q   + 5 q   + q   - 2 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1079
10.78
1078
10.80
1080