© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1078Visit 1078's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1078's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X5,14,6,15 X11,17,12,16 X15,13,16,12 X17,20,18,1 X9,18,10,19 X19,10,20,11 X13,6,14,7 X7283 |
Gauss Code: | {-1, 10, -2, 1, -3, 9, -10, 2, -7, 8, -4, 5, -9, 3, -5, 4, -6, 7, -8, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 8 14 2 18 16 6 12 20 10 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 7t-2 - 16t-1 + 21 - 16t + 7t2 - t3 |
Conway Polynomial: | 1 + 3z2 + z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n98, K11n105, ...} |
Determinant and Signature: | {69, -4} |
Jones Polynomial: | q-10 - 3q-9 + 5q-8 - 9q-7 + 11q-6 - 11q-5 + 11q-4 - 8q-3 + 6q-2 - 3q-1 + 1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-32 + q-30 - 2q-28 - q-26 - q-24 - 3q-22 + 2q-20 + 2q-16 + 2q-14 - q-12 + 3q-10 - 2q-8 + q-6 + q-4 - q-2 + 1 |
HOMFLY-PT Polynomial: | a2 + 2a2z2 + a2z4 - a4 - 3a4z2 - 3a4z4 - a4z6 + 4a6 + 7a6z2 + 3a6z4 - 4a8 - 3a8z2 + a10 |
Kauffman Polynomial: | - a2 + 3a2z2 - 3a2z4 + a2z6 - a3z + 7a3z3 - 9a3z5 + 3a3z7 - a4 + 6a4z2 - 4a4z4 - 5a4z6 + 3a4z8 - 3a5z + 15a5z3 - 21a5z5 + 6a5z7 + a5z9 - 4a6 + 11a6z2 - 7a6z4 - 8a6z6 + 6a6z8 + 2a7z + 5a7z3 - 15a7z5 + 7a7z7 + a7z9 - 4a8 + 10a8z2 - 10a8z4 + 2a8z6 + 3a8z8 + 6a9z - 7a9z3 + 4a9z7 - a10 + a10z2 - 3a10z4 + 4a10z6 + 2a11z - 4a11z3 + 3a11z5 - a12z2 + a12z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, -5} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 1078. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-28 - 3q-27 + q-26 + 7q-25 - 14q-24 + 7q-23 + 20q-22 - 41q-21 + 18q-20 + 45q-19 - 79q-18 + 24q-17 + 75q-16 - 104q-15 + 16q-14 + 93q-13 - 100q-12 - q-11 + 91q-10 - 73q-9 - 16q-8 + 69q-7 - 37q-6 - 21q-5 + 37q-4 - 10q-3 - 13q-2 + 11q-1 - 3q + q2 |
3 | q-54 - 3q-53 + q-52 + 3q-51 + 2q-50 - 9q-49 + q-48 + 14q-47 - 7q-46 - 21q-45 + 15q-44 + 40q-43 - 40q-42 - 60q-41 + 64q-40 + 105q-39 - 107q-38 - 150q-37 + 131q-36 + 232q-35 - 170q-34 - 299q-33 + 174q-32 + 378q-31 - 166q-30 - 441q-29 + 141q-28 + 478q-27 - 92q-26 - 504q-25 + 50q-24 + 486q-23 + 19q-22 - 474q-21 - 62q-20 + 416q-19 + 126q-18 - 371q-17 - 153q-16 + 288q-15 + 191q-14 - 221q-13 - 190q-12 + 139q-11 + 182q-10 - 75q-9 - 149q-8 + 21q-7 + 115q-6 + 6q-5 - 71q-4 - 21q-3 + 39q-2 + 20q-1 - 17 - 13q + 6q2 + 5q3 - 3q5 + q6 |
4 | q-88 - 3q-87 + q-86 + 3q-85 - 2q-84 + 7q-83 - 15q-82 + 5q-81 + 8q-80 - 15q-79 + 29q-78 - 33q-77 + 23q-76 + 9q-75 - 71q-74 + 65q-73 - 30q-72 + 98q-71 + 3q-70 - 243q-69 + 68q-68 + 33q-67 + 335q-66 + 34q-65 - 622q-64 - 88q-63 + 137q-62 + 855q-61 + 237q-60 - 1186q-59 - 543q-58 + 114q-57 + 1619q-56 + 768q-55 - 1692q-54 - 1249q-53 - 225q-52 + 2311q-51 + 1542q-50 - 1828q-49 - 1871q-48 - 846q-47 + 2579q-46 + 2234q-45 - 1539q-44 - 2109q-43 - 1481q-42 + 2368q-41 + 2574q-40 - 1003q-39 - 1935q-38 - 1935q-37 + 1832q-36 + 2556q-35 - 384q-34 - 1487q-33 - 2165q-32 + 1114q-31 + 2250q-30 + 227q-29 - 862q-28 - 2147q-27 + 337q-26 + 1685q-25 + 679q-24 - 157q-23 - 1796q-22 - 296q-21 + 925q-20 + 786q-19 + 425q-18 - 1150q-17 - 559q-16 + 215q-15 + 527q-14 + 642q-13 - 467q-12 - 426q-11 - 167q-10 + 152q-9 + 484q-8 - 56q-7 - 151q-6 - 186q-5 - 55q-4 + 207q-3 + 42q-2 + 5q-1 - 73 - 63q + 48q2 + 15q3 + 20q4 - 10q5 - 20q6 + 6q7 + 5q9 - 3q11 + q12 |
5 | q-130 - 3q-129 + q-128 + 3q-127 - 2q-126 + 3q-125 + q-124 - 11q-123 - q-122 + 10q-121 - 5q-120 + 12q-119 + 11q-118 - 19q-117 - 17q-116 - 7q-115 - 8q-114 + 34q-113 + 64q-112 + 15q-111 - 70q-110 - 122q-109 - 72q-108 + 97q-107 + 260q-106 + 210q-105 - 150q-104 - 513q-103 - 413q-102 + 166q-101 + 848q-100 + 879q-99 - 129q-98 - 1416q-97 - 1543q-96 - 46q-95 + 2044q-94 + 2662q-93 + 489q-92 - 2876q-91 - 4079q-90 - 1346q-89 + 3574q-88 + 6027q-87 + 2674q-86 - 4187q-85 - 8067q-84 - 4577q-83 + 4233q-82 + 10360q-81 + 6902q-80 - 3915q-79 - 12209q-78 - 9509q-77 + 2846q-76 + 13721q-75 + 12114q-74 - 1426q-73 - 14485q-72 - 14357q-71 - 404q-70 + 14575q-69 + 16123q-68 + 2285q-67 - 14083q-66 - 17210q-65 - 4006q-64 + 13016q-63 + 17702q-62 + 5584q-61 - 11764q-60 - 17634q-59 - 6755q-58 + 10152q-57 + 17149q-56 + 7858q-55 - 8590q-54 - 16326q-53 - 8586q-52 + 6696q-51 + 15252q-50 + 9370q-49 - 4919q-48 - 13878q-47 - 9783q-46 + 2792q-45 + 12248q-44 + 10197q-43 - 869q-42 - 10306q-41 - 10049q-40 - 1232q-39 + 8094q-38 + 9720q-37 + 2866q-36 - 5714q-35 - 8692q-34 - 4271q-33 + 3298q-32 + 7379q-31 + 4963q-30 - 1114q-29 - 5569q-28 - 5126q-27 - 654q-26 + 3713q-25 + 4588q-24 + 1841q-23 - 1889q-22 - 3676q-21 - 2372q-20 + 481q-19 + 2460q-18 + 2330q-17 + 526q-16 - 1363q-15 - 1890q-14 - 947q-13 + 453q-12 + 1246q-11 + 1021q-10 + 96q-9 - 670q-8 - 792q-7 - 339q-6 + 234q-5 + 498q-4 + 354q-3 + 10q-2 - 247q-1 - 266 - 84q + 88q2 + 136q3 + 95q4 - 6q5 - 73q6 - 56q7 - 3q8 + 15q9 + 24q10 + 20q11 - 10q12 - 13q13 - q14 + 5q17 - 3q19 + q20 |
6 | q-180 - 3q-179 + q-178 + 3q-177 - 2q-176 + 3q-175 - 3q-174 + 5q-173 - 17q-172 + q-171 + 20q-170 - 12q-169 + 16q-168 + 16q-166 - 64q-165 - 16q-164 + 56q-163 - 31q-162 + 57q-161 + 45q-160 + 53q-159 - 192q-158 - 105q-157 + 86q-156 - 56q-155 + 206q-154 + 240q-153 + 164q-152 - 507q-151 - 466q-150 - 10q-149 - 75q-148 + 724q-147 + 947q-146 + 513q-145 - 1236q-144 - 1700q-143 - 773q-142 - 160q-141 + 2249q-140 + 3229q-139 + 1863q-138 - 2622q-137 - 5131q-136 - 3864q-135 - 1184q-134 + 5608q-133 + 9300q-132 + 6575q-131 - 3839q-130 - 12368q-129 - 12561q-128 - 6202q-127 + 10109q-126 + 21589q-125 + 19006q-124 - 1132q-123 - 22676q-122 - 29958q-121 - 20559q-120 + 11098q-119 + 38927q-118 + 42539q-117 + 11806q-116 - 30082q-115 - 53940q-114 - 47522q-113 + 1206q-112 + 53566q-111 + 73539q-110 + 38032q-109 - 25953q-108 - 74838q-107 - 81793q-106 - 22378q-105 + 55677q-104 + 100433q-103 + 71011q-102 - 7603q-101 - 82112q-100 - 110636q-99 - 52366q-98 + 42840q-97 + 112533q-96 + 98016q-95 + 17489q-94 - 73977q-93 - 124197q-92 - 76852q-91 + 22424q-90 + 108825q-89 + 110931q-88 + 38902q-87 - 57530q-86 - 122656q-85 - 89748q-84 + 3219q-83 + 95965q-82 + 111176q-81 + 52519q-80 - 39902q-79 - 112292q-78 - 93390q-77 - 12244q-76 + 79605q-75 + 104478q-74 + 61055q-73 - 22458q-72 - 97465q-71 - 92520q-70 - 26534q-69 + 60290q-68 + 93735q-67 + 67801q-66 - 3050q-65 - 77893q-64 - 88186q-63 - 41293q-62 + 36285q-61 + 77422q-60 + 71658q-59 + 18441q-58 - 51845q-57 - 77196q-56 - 53313q-55 + 8682q-54 + 53235q-53 + 67591q-52 + 37030q-51 - 21155q-50 - 56423q-49 - 55896q-48 - 16022q-47 + 23351q-46 + 51694q-45 + 44747q-44 + 6501q-43 - 28428q-42 - 44708q-41 - 28813q-40 - 3643q-39 + 27093q-38 + 37278q-37 + 21464q-36 - 2739q-35 - 23755q-34 - 25635q-33 - 17836q-32 + 4209q-31 + 19700q-30 + 20320q-29 + 10689q-28 - 4203q-27 - 12513q-26 - 16786q-25 - 7307q-24 + 3545q-23 + 9987q-22 + 10428q-21 + 5024q-20 - 771q-19 - 8074q-18 - 7082q-17 - 3451q-16 + 1127q-15 + 4209q-14 + 4632q-13 + 3406q-12 - 1234q-11 - 2571q-10 - 2939q-9 - 1674q-8 - 63q-7 + 1444q-6 + 2323q-5 + 744q-4 + 100q-3 - 799q-2 - 955q-1 - 844 - 130q + 666q2 + 376q3 + 422q4 + 67q5 - 121q6 - 365q7 - 230q8 + 72q9 + 15q10 + 135q11 + 86q12 + 59q13 - 73q14 - 67q15 + 4q16 - 27q17 + 15q18 + 15q19 + 29q20 - 10q21 - 13q22 + 6q23 - 7q24 + 5q27 - 3q29 + q30 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 78]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[11, 17, 12, 16], > X[15, 13, 16, 12], X[17, 20, 18, 1], X[9, 18, 10, 19], X[19, 10, 20, 11], > X[13, 6, 14, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 78]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -7, 8, -4, 5, -9, 3, -5, 4, -6, 7, -8, > 6] |
In[4]:= | DTCode[Knot[10, 78]] |
Out[4]= | DTCode[4, 8, 14, 2, 18, 16, 6, 12, 20, 10] |
In[5]:= | br = BR[Knot[10, 78]] |
Out[5]= | BR[5, {-1, -1, -2, 1, -2, -1, 3, -2, -4, 3, -4, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 78]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 78]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 78]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 78]][t] |
Out[10]= | -3 7 16 2 3 21 - t + -- - -- - 16 t + 7 t - t 2 t t |
In[11]:= | Conway[Knot[10, 78]][z] |
Out[11]= | 2 4 6 1 + 3 z + z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 78], Knot[11, NonAlternating, 98], Knot[11, NonAlternating, 105]} |
In[13]:= | {KnotDet[Knot[10, 78]], KnotSignature[Knot[10, 78]]} |
Out[13]= | {69, -4} |
In[14]:= | Jones[Knot[10, 78]][q] |
Out[14]= | -10 3 5 9 11 11 11 8 6 3 1 + q - -- + -- - -- + -- - -- + -- - -- + -- - - 9 8 7 6 5 4 3 2 q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 78]} |
In[16]:= | A2Invariant[Knot[10, 78]][q] |
Out[16]= | -32 -30 2 -26 -24 3 2 2 2 -12 3 2 1 + q + q - --- - q - q - --- + --- + --- + --- - q + --- - -- + 28 22 20 16 14 10 8 q q q q q q q -6 -4 -2 > q + q - q |
In[17]:= | HOMFLYPT[Knot[10, 78]][a, z] |
Out[17]= | 2 4 6 8 10 2 2 4 2 6 2 8 2 2 4 a - a + 4 a - 4 a + a + 2 a z - 3 a z + 7 a z - 3 a z + a z - 4 4 6 4 4 6 > 3 a z + 3 a z - a z |
In[18]:= | Kauffman[Knot[10, 78]][a, z] |
Out[18]= | 2 4 6 8 10 3 5 7 9 11 -a - a - 4 a - 4 a - a - a z - 3 a z + 2 a z + 6 a z + 2 a z + 2 2 4 2 6 2 8 2 10 2 12 2 3 3 > 3 a z + 6 a z + 11 a z + 10 a z + a z - a z + 7 a z + 5 3 7 3 9 3 11 3 2 4 4 4 6 4 > 15 a z + 5 a z - 7 a z - 4 a z - 3 a z - 4 a z - 7 a z - 8 4 10 4 12 4 3 5 5 5 7 5 11 5 > 10 a z - 3 a z + a z - 9 a z - 21 a z - 15 a z + 3 a z + 2 6 4 6 6 6 8 6 10 6 3 7 5 7 > a z - 5 a z - 8 a z + 2 a z + 4 a z + 3 a z + 6 a z + 7 7 9 7 4 8 6 8 8 8 5 9 7 9 > 7 a z + 4 a z + 3 a z + 6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 78]], Vassiliev[3][Knot[10, 78]]} |
Out[19]= | {3, -5} |
In[20]:= | Kh[Knot[10, 78]][q, t] |
Out[20]= | 3 4 1 2 1 3 2 6 3 -- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 5 3 21 8 19 7 17 7 17 6 15 6 15 5 13 5 q q q t q t q t q t q t q t q t 5 6 6 5 5 6 3 5 t 2 t > ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + -- + --- + 13 4 11 4 11 3 9 3 9 2 7 2 7 5 3 q q t q t q t q t q t q t q t q t q 2 > q t |
In[21]:= | ColouredJones[Knot[10, 78], 2][q] |
Out[21]= | -28 3 -26 7 14 7 20 41 18 45 79 24 75 q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + --- + --- - 27 25 24 23 22 21 20 19 18 17 16 q q q q q q q q q q q 104 16 93 100 -11 91 73 16 69 37 21 37 10 > --- + --- + --- - --- - q + --- - -- - -- + -- - -- - -- + -- - -- - 15 14 13 12 10 9 8 7 6 5 4 3 q q q q q q q q q q q q 13 11 2 > -- + -- - 3 q + q 2 q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1078 |
|