© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 108Visit 108's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 108's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X7,16,8,17 X5,13,6,12 X3,15,4,14 X13,5,14,4 X15,3,16,2 X9,18,10,19 X11,20,12,1 X17,8,18,9 X19,10,20,11 |
Gauss Code: | {-1, 6, -4, 5, -3, 1, -2, 9, -7, 10, -8, 3, -5, 4, -6, 2, -9, 7, -10, 8} |
DT (Dowker-Thistlethwaite) Code: | 6 14 12 16 18 20 4 2 8 10 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 5t-2 - 5t-1 + 5 - 5t + 5t2 - 2t3 |
Conway Polynomial: | 1 - 3z2 - 7z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {29, -4} |
Jones Polynomial: | q-8 - 2q-7 + 3q-6 - 4q-5 + 4q-4 - 4q-3 + 4q-2 - 3q-1 + 2 - q + q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-24 + q-14 - q-12 - q-8 - q-6 + 1 + q2 + q4 + q6 |
HOMFLY-PT Polynomial: | 3 + 4z2 + z4 - 3a2 - 7a2z2 - 5a2z4 - a2z6 - 3a4z2 - 4a4z4 - a4z6 + a6 + 3a6z2 + a6z4 |
Kauffman Polynomial: | 3 - 13z2 + 16z4 - 7z6 + z8 - 6az3 + 11az5 - 6az7 + az9 + 3a2 - 18a2z2 + 30a2z4 - 17a2z6 + 3a2z8 - a3z + 5a3z3 - a3z5 - 3a3z7 + a3z9 + 3a4z2 + a4z4 - 6a4z6 + 2a4z8 + a5z + 2a5z3 - 8a5z5 + 3a5z7 - a6 + 5a6z2 - 10a6z4 + 4a6z6 + 2a7z - 7a7z3 + 4a7z5 - 2a8z2 + 3a8z4 + 2a9z3 + a10z2 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-3, 4} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 108. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-22 - 2q-21 + q-20 + 2q-19 - 5q-18 + 4q-17 + 2q-16 - 7q-15 + 5q-14 + 2q-13 - 8q-12 + 6q-11 + 3q-10 - 10q-9 + 7q-8 + 5q-7 - 11q-6 + 5q-5 + 6q-4 - 10q-3 + 3q-2 + 6q-1 - 7 + q + 5q2 - 4q3 - q4 + 3q5 - q6 - q7 + q8 |
3 | q-42 - 2q-41 + q-40 + q-38 - 2q-37 + q-36 + q-35 - q-34 - 2q-33 + q-32 + 3q-31 - q-30 - 3q-29 - q-28 + 5q-27 + 3q-26 - 5q-25 - 6q-24 + 6q-23 + 6q-22 - 4q-21 - 7q-20 + 4q-19 + 5q-18 - 3q-17 - 3q-16 + 2q-15 + q-14 - 3q-13 + q-12 + 2q-11 - q-10 - 3q-9 + 3q-8 + 2q-7 - q-6 - 4q-5 + 4q-4 + 3q-3 - 2q-2 - 6q-1 + 4 + 5q - q2 - 8q3 + q4 + 6q5 + 3q6 - 7q7 - 2q8 + 3q9 + 5q10 - 3q11 - 3q12 + 3q14 - q16 - q17 + q18 |
4 | q-68 - 2q-67 + q-66 - q-64 + 4q-63 - 5q-62 + 3q-61 - 2q-60 - 2q-59 + 7q-58 - 8q-57 + 8q-56 - 3q-55 - 6q-54 + 7q-53 - 8q-52 + 16q-51 - 4q-50 - 13q-49 + 3q-48 - 9q-47 + 29q-46 - q-45 - 20q-44 - 5q-43 - 14q-42 + 41q-41 + 6q-40 - 22q-39 - 12q-38 - 23q-37 + 46q-36 + 13q-35 - 18q-34 - 10q-33 - 32q-32 + 40q-31 + 13q-30 - 11q-29 - q-28 - 34q-27 + 32q-26 + 6q-25 - 9q-24 + 9q-23 - 30q-22 + 26q-21 - 9q-19 + 15q-18 - 29q-17 + 21q-16 - 2q-15 - 7q-14 + 20q-13 - 27q-12 + 14q-11 - 5q-10 - 5q-9 + 25q-8 - 22q-7 + 9q-6 - 8q-5 - 8q-4 + 24q-3 - 14q-2 + 10q-1 - 7 - 12q + 16q2 - 10q3 + 13q4 - q5 - 11q6 + 7q7 - 12q8 + 11q9 + 5q10 - 4q11 + 4q12 - 15q13 + 4q14 + 5q15 + 2q16 + 7q17 - 11q18 - 2q19 + 2q21 + 8q22 - 4q23 - 2q24 - 2q25 - q26 + 4q27 - q30 - q31 + q32 |
5 | q-100 - 2q-99 + q-98 - q-96 + 2q-95 + q-94 - 3q-93 - 2q-90 + 4q-89 + 3q-88 - 2q-87 - 2q-86 - 3q-85 - 4q-84 + 6q-83 + 10q-82 + q-81 - 8q-80 - 13q-79 - 7q-78 + 14q-77 + 23q-76 + 7q-75 - 21q-74 - 31q-73 - 8q-72 + 26q-71 + 40q-70 + 13q-69 - 35q-68 - 51q-67 - 13q-66 + 41q-65 + 59q-64 + 20q-63 - 48q-62 - 71q-61 - 25q-60 + 53q-59 + 82q-58 + 31q-57 - 55q-56 - 89q-55 - 38q-54 + 51q-53 + 94q-52 + 47q-51 - 49q-50 - 92q-49 - 48q-48 + 37q-47 + 86q-46 + 51q-45 - 30q-44 - 79q-43 - 45q-42 + 25q-41 + 67q-40 + 42q-39 - 21q-38 - 63q-37 - 36q-36 + 21q-35 + 57q-34 + 34q-33 - 20q-32 - 55q-31 - 34q-30 + 18q-29 + 52q-28 + 32q-27 - 12q-26 - 45q-25 - 35q-24 + 8q-23 + 39q-22 + 29q-21 + q-20 - 27q-19 - 30q-18 - 2q-17 + 20q-16 + 18q-15 + 7q-14 - 9q-13 - 17q-12 - 3q-11 + 7q-10 + q-9 + 4q-8 + q-7 - 3q-6 + 4q-5 + 3q-4 - 8q-3 - 6q-2 - q-1 + 4 + 11q + 8q2 - 6q3 - 11q4 - 10q5 - q6 + 11q7 + 13q8 + 2q9 - 3q10 - 11q11 - 11q12 + 2q13 + 8q14 + 6q15 + 7q16 - 9q18 - 6q19 - 2q20 - 2q21 + 7q22 + 8q23 + 2q24 - q25 - 5q26 - 9q27 - 2q28 + 4q29 + 5q30 + 7q31 + 2q32 - 7q33 - 5q34 - 3q35 + 5q37 + 6q38 - q39 - 2q40 - 2q41 - 3q42 + 3q44 + q45 - q48 - q49 + q50 |
6 | q-138 - 2q-137 + q-136 - q-134 + 2q-133 - q-132 + 3q-131 - 6q-130 + 2q-129 - 2q-127 + 6q-126 - q-125 + 5q-124 - 11q-123 + 2q-122 - 3q-121 - 2q-120 + 15q-119 + 3q-117 - 19q-116 - q-115 - 4q-114 + 5q-113 + 29q-112 - 2q-111 - 6q-110 - 32q-109 - 4q-108 + q-107 + 19q-106 + 46q-105 - 13q-104 - 22q-103 - 44q-102 + 14q-100 + 32q-99 + 53q-98 - 33q-97 - 40q-96 - 47q-95 + 17q-94 + 34q-93 + 44q-92 + 47q-91 - 65q-90 - 65q-89 - 49q-88 + 45q-87 + 67q-86 + 66q-85 + 43q-84 - 107q-83 - 103q-82 - 68q-81 + 67q-80 + 108q-79 + 104q-78 + 60q-77 - 134q-76 - 143q-75 - 108q-74 + 59q-73 + 126q-72 + 139q-71 + 97q-70 - 120q-69 - 151q-68 - 141q-67 + 26q-66 + 100q-65 + 137q-64 + 126q-63 - 79q-62 - 118q-61 - 141q-60 + 2q-59 + 59q-58 + 105q-57 + 125q-56 - 52q-55 - 82q-54 - 123q-53 - q-52 + 38q-51 + 84q-50 + 118q-49 - 42q-48 - 70q-47 - 122q-46 - 9q-45 + 31q-44 + 84q-43 + 128q-42 - 21q-41 - 63q-40 - 135q-39 - 34q-38 + 11q-37 + 80q-36 + 142q-35 + 13q-34 - 38q-33 - 137q-32 - 56q-31 - 20q-30 + 54q-29 + 140q-28 + 44q-27 - 2q-26 - 117q-25 - 61q-24 - 47q-23 + 15q-22 + 116q-21 + 60q-20 + 34q-19 - 82q-18 - 48q-17 - 60q-16 - 24q-15 + 77q-14 + 54q-13 + 57q-12 - 43q-11 - 19q-10 - 51q-9 - 47q-8 + 33q-7 + 27q-6 + 54q-5 - 18q-4 + 13q-3 - 21q-2 - 42q-1 + 7 - 3q + 30q2 - 21q3 + 24q4 + 7q5 - 17q6 + 12q7 - 10q8 + 10q9 - 38q10 + 9q11 + 8q12 - 3q13 + 26q14 + 6q15 + 16q16 - 39q17 - 6q18 - 9q19 - 14q20 + 20q21 + 14q22 + 31q23 - 18q24 + 2q25 - 12q26 - 25q27 - 2q28 + q29 + 26q30 - 6q31 + 18q32 + 4q33 - 13q34 - 9q35 - 12q36 + 8q37 - 15q38 + 14q39 + 12q40 + 4q41 + 2q42 - 5q43 + 3q44 - 21q45 - q46 + 2q47 + 5q48 + 6q49 + 5q50 + 10q51 - 12q52 - 4q53 - 5q54 - 2q55 + 3q57 + 10q58 - 2q59 - 2q61 - 2q62 - 3q63 - q64 + 4q65 + q67 - q70 - q71 + q72 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 8]] |
Out[2]= | PD[X[1, 6, 2, 7], X[7, 16, 8, 17], X[5, 13, 6, 12], X[3, 15, 4, 14], > X[13, 5, 14, 4], X[15, 3, 16, 2], X[9, 18, 10, 19], X[11, 20, 12, 1], > X[17, 8, 18, 9], X[19, 10, 20, 11]] |
In[3]:= | GaussCode[Knot[10, 8]] |
Out[3]= | GaussCode[-1, 6, -4, 5, -3, 1, -2, 9, -7, 10, -8, 3, -5, 4, -6, 2, -9, 7, -10, > 8] |
In[4]:= | DTCode[Knot[10, 8]] |
Out[4]= | DTCode[6, 14, 12, 16, 18, 20, 4, 2, 8, 10] |
In[5]:= | br = BR[Knot[10, 8]] |
Out[5]= | BR[4, {-1, -1, -1, -1, -1, 2, -1, 2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 8]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 8]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 8]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 8]][t] |
Out[10]= | 2 5 5 2 3 5 - -- + -- - - - 5 t + 5 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 8]][z] |
Out[11]= | 2 4 6 1 - 3 z - 7 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 8]} |
In[13]:= | {KnotDet[Knot[10, 8]], KnotSignature[Knot[10, 8]]} |
Out[13]= | {29, -4} |
In[14]:= | Jones[Knot[10, 8]][q] |
Out[14]= | -8 2 3 4 4 4 4 3 2 2 + q - -- + -- - -- + -- - -- + -- - - - q + q 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 8]} |
In[16]:= | A2Invariant[Knot[10, 8]][q] |
Out[16]= | -24 -14 -12 -8 -6 2 4 6 1 + q + q - q - q - q + q + q + q |
In[17]:= | HOMFLYPT[Knot[10, 8]][a, z] |
Out[17]= | 2 6 2 2 2 4 2 6 2 4 2 4 4 4 3 - 3 a + a + 4 z - 7 a z - 3 a z + 3 a z + z - 5 a z - 4 a z + 6 4 2 6 4 6 > a z - a z - a z |
In[18]:= | Kauffman[Knot[10, 8]][a, z] |
Out[18]= | 2 6 3 5 7 2 2 2 4 2 6 2 3 + 3 a - a - a z + a z + 2 a z - 13 z - 18 a z + 3 a z + 5 a z - 8 2 10 2 3 3 3 5 3 7 3 9 3 4 > 2 a z + a z - 6 a z + 5 a z + 2 a z - 7 a z + 2 a z + 16 z + 2 4 4 4 6 4 8 4 5 3 5 5 5 > 30 a z + a z - 10 a z + 3 a z + 11 a z - a z - 8 a z + 7 5 6 2 6 4 6 6 6 7 3 7 > 4 a z - 7 z - 17 a z - 6 a z + 4 a z - 6 a z - 3 a z + 5 7 8 2 8 4 8 9 3 9 > 3 a z + z + 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 8]], Vassiliev[3][Knot[10, 8]]} |
Out[19]= | {-3, 4} |
In[20]:= | Kh[Knot[10, 8]][q, t] |
Out[20]= | 2 3 1 1 1 2 1 2 2 2 -- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 5 3 17 6 15 5 13 5 13 4 11 4 11 3 9 3 9 2 q q q t q t q t q t q t q t q t q t 2 2 2 2 t t 2 3 5 4 > ----- + ---- + ---- + --- + - + 2 q t + q t + q t 7 2 7 5 3 q q t q t q t q |
In[21]:= | ColouredJones[Knot[10, 8], 2][q] |
Out[21]= | -22 2 -20 2 5 4 2 7 5 2 8 6 -7 + q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + --- + 21 19 18 17 16 15 14 13 12 11 q q q q q q q q q q 3 10 7 5 11 5 6 10 3 6 2 3 4 > --- - -- + -- + -- - -- + -- + -- - -- + -- + - + q + 5 q - 4 q - q + 10 9 8 7 6 5 4 3 2 q q q q q q q q q q 5 6 7 8 > 3 q - q - q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 108 |
|