© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 107Visit 107's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 107's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,14,6,15 X3,13,4,12 X13,3,14,2 X11,20,12,1 X19,6,20,7 X7,18,8,19 X9,16,10,17 X15,10,16,11 X17,8,18,9 |
Gauss Code: | {-1, 4, -3, 1, -2, 6, -7, 10, -8, 9, -5, 3, -4, 2, -9, 8, -10, 7, -6, 5} |
DT (Dowker-Thistlethwaite) Code: | 4 12 14 18 16 20 2 10 8 6 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 3t-2 + 11t-1 - 15 + 11t - 3t2 |
Conway Polynomial: | 1 - z2 - 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {K11a59, K11n3, ...} |
Determinant and Signature: | {43, -2} |
Jones Polynomial: | q-9 - 2q-8 + 3q-7 - 5q-6 + 6q-5 - 7q-4 + 7q-3 - 5q-2 + 4q-1 - 2 + q |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-28 + q-22 - 2q-20 - q-18 - q-14 + q-12 + q-8 + q-6 - q-4 + 2q-2 + q4 |
HOMFLY-PT Polynomial: | 1 + z2 - a2z2 - a2z4 + a4 - a4z4 - 2a6 - 2a6z2 - a6z4 + a8 + a8z2 |
Kauffman Polynomial: | 1 - 2z2 + z4 - 3az3 + 2az5 - 2a2z2 - a2z4 + 2a2z6 + a3z3 - 2a3z5 + 2a3z7 + a4 - 4a4z2 + 8a4z4 - 5a4z6 + 2a4z8 - 2a5z + 6a5z3 - 2a5z5 - a5z7 + a5z9 + 2a6 - 10a6z2 + 20a6z4 - 15a6z6 + 4a6z8 - 5a7z + 10a7z3 - 6a7z5 - a7z7 + a7z9 + a8 - 3a8z2 + 6a8z4 - 7a8z6 + 2a8z8 - 3a9z + 8a9z3 - 8a9z5 + 2a9z7 + 3a10z2 - 4a10z4 + a10z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-1, 3} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 107. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-26 - 2q-25 + 5q-23 - 7q-22 - 2q-21 + 14q-20 - 11q-19 - 9q-18 + 24q-17 - 11q-16 - 19q-15 + 31q-14 - 7q-13 - 28q-12 + 34q-11 - 3q-10 - 31q-9 + 30q-8 - 24q-6 + 20q-5 + q-4 - 14q-3 + 11q-2 - 6 + 5q - 2q3 + q4 |
3 | q-51 - 2q-50 + 2q-48 + 2q-47 - 6q-46 - 3q-45 + 9q-44 + 8q-43 - 14q-42 - 13q-41 + 16q-40 + 23q-39 - 17q-38 - 33q-37 + 14q-36 + 40q-35 - 5q-34 - 48q-33 - 2q-32 + 47q-31 + 15q-30 - 46q-29 - 23q-28 + 37q-27 + 35q-26 - 32q-25 - 40q-24 + 21q-23 + 48q-22 - 16q-21 - 49q-20 + 8q-19 + 50q-18 - 50q-16 + 37q-14 + 9q-13 - 33q-12 - 4q-11 + 16q-10 + 8q-9 - 13q-8 + 2q-7 + q-6 - q-5 - 3q-4 + 9q-3 - q-2 - 6q-1 - 3 + 8q + 2q2 - 4q3 - 4q4 + 4q5 + q6 - 2q8 + q9 |
4 | q-84 - 2q-83 + 2q-81 - q-80 + 3q-79 - 8q-78 + q-77 + 9q-76 - 2q-75 + 8q-74 - 24q-73 - 4q-72 + 24q-71 + 4q-70 + 23q-69 - 51q-68 - 26q-67 + 34q-66 + 18q-65 + 64q-64 - 70q-63 - 61q-62 + 20q-61 + 15q-60 + 120q-59 - 60q-58 - 74q-57 - 6q-56 - 27q-55 + 149q-54 - 39q-53 - 41q-52 + 2q-51 - 87q-50 + 123q-49 - 45q-48 + 20q-47 + 61q-46 - 128q-45 + 64q-44 - 90q-43 + 71q-42 + 145q-41 - 135q-40 + 5q-39 - 152q-38 + 101q-37 + 219q-36 - 126q-35 - 35q-34 - 202q-33 + 112q-32 + 268q-31 - 107q-30 - 59q-29 - 236q-28 + 104q-27 + 288q-26 - 68q-25 - 58q-24 - 254q-23 + 58q-22 + 269q-21 - 7q-20 - 20q-19 - 242q-18 - 11q-17 + 198q-16 + 37q-15 + 45q-14 - 184q-13 - 62q-12 + 101q-11 + 38q-10 + 87q-9 - 102q-8 - 64q-7 + 27q-6 + 10q-5 + 83q-4 - 38q-3 - 37q-2 - 3q-1 - 11 + 51q - 8q2 - 11q3 - 6q4 - 15q5 + 22q6 - 2q9 - 8q10 + 6q11 + q13 - 2q15 + q16 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 7]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2], > X[11, 20, 12, 1], X[19, 6, 20, 7], X[7, 18, 8, 19], X[9, 16, 10, 17], > X[15, 10, 16, 11], X[17, 8, 18, 9]] |
In[3]:= | GaussCode[Knot[10, 7]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 6, -7, 10, -8, 9, -5, 3, -4, 2, -9, 8, -10, 7, -6, > 5] |
In[4]:= | DTCode[Knot[10, 7]] |
Out[4]= | DTCode[4, 12, 14, 18, 16, 20, 2, 10, 8, 6] |
In[5]:= | br = BR[Knot[10, 7]] |
Out[5]= | BR[5, {-1, -1, -2, 1, -2, -3, 2, -3, -3, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 7]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 7]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 7]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 7]][t] |
Out[10]= | 3 11 2 -15 - -- + -- + 11 t - 3 t 2 t t |
In[11]:= | Conway[Knot[10, 7]][z] |
Out[11]= | 2 4 1 - z - 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 7], Knot[11, Alternating, 59], Knot[11, NonAlternating, 3]} |
In[13]:= | {KnotDet[Knot[10, 7]], KnotSignature[Knot[10, 7]]} |
Out[13]= | {43, -2} |
In[14]:= | Jones[Knot[10, 7]][q] |
Out[14]= | -9 2 3 5 6 7 7 5 4 -2 + q - -- + -- - -- + -- - -- + -- - -- + - + q 8 7 6 5 4 3 2 q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 7]} |
In[16]:= | A2Invariant[Knot[10, 7]][q] |
Out[16]= | -28 -22 2 -18 -14 -12 -8 -6 -4 2 4 q + q - --- - q - q + q + q + q - q + -- + q 20 2 q q |
In[17]:= | HOMFLYPT[Knot[10, 7]][a, z] |
Out[17]= | 4 6 8 2 2 2 6 2 8 2 2 4 4 4 6 4 1 + a - 2 a + a + z - a z - 2 a z + a z - a z - a z - a z |
In[18]:= | Kauffman[Knot[10, 7]][a, z] |
Out[18]= | 4 6 8 5 7 9 2 2 2 4 2 1 + a + 2 a + a - 2 a z - 5 a z - 3 a z - 2 z - 2 a z - 4 a z - 6 2 8 2 10 2 3 3 3 5 3 7 3 > 10 a z - 3 a z + 3 a z - 3 a z + a z + 6 a z + 10 a z + 9 3 4 2 4 4 4 6 4 8 4 10 4 5 > 8 a z + z - a z + 8 a z + 20 a z + 6 a z - 4 a z + 2 a z - 3 5 5 5 7 5 9 5 2 6 4 6 6 6 > 2 a z - 2 a z - 6 a z - 8 a z + 2 a z - 5 a z - 15 a z - 8 6 10 6 3 7 5 7 7 7 9 7 4 8 6 8 > 7 a z + a z + 2 a z - a z - a z + 2 a z + 2 a z + 4 a z + 8 8 5 9 7 9 > 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 7]], Vassiliev[3][Knot[10, 7]]} |
Out[19]= | {-1, 3} |
In[20]:= | Kh[Knot[10, 7]][q, t] |
Out[20]= | 2 3 1 1 1 2 1 3 2 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 3 q 19 8 17 7 15 7 15 6 13 6 13 5 11 5 q q t q t q t q t q t q t q t 3 3 4 3 3 4 2 3 t > ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + - + q t + 11 4 9 4 9 3 7 3 7 2 5 2 5 3 q q t q t q t q t q t q t q t q t 3 2 > q t |
In[21]:= | ColouredJones[Knot[10, 7], 2][q] |
Out[21]= | -26 2 5 7 2 14 11 9 24 11 19 31 -6 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 25 23 22 21 20 19 18 17 16 15 14 q q q q q q q q q q q 7 28 34 3 31 30 24 20 -4 14 11 3 4 > --- - --- + --- - --- - -- + -- - -- + -- + q - -- + -- + 5 q - 2 q + q 13 12 11 10 9 8 6 5 3 2 q q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 107 |
|