© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1072Visit 1072's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1072's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X10,6,11,5 X8394 X2,9,3,10 X16,8,17,7 X18,12,19,11 X20,14,1,13 X12,20,13,19 X14,18,15,17 X6,16,7,15 |
Gauss Code: | {1, -4, 3, -1, 2, -10, 5, -3, 4, -2, 6, -8, 7, -9, 10, -5, 9, -6, 8, -7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 16 2 18 20 6 14 12 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 9t-2 - 16t-1 + 19 - 16t + 9t2 - 2t3 |
Conway Polynomial: | 1 + 2z2 - 3z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {73, 4} |
Jones Polynomial: | 1 - 2q + 5q2 - 8q3 + 11q4 - 12q5 + 12q6 - 10q7 + 7q8 - 4q9 + q10 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | 1 + q4 + 2q6 - 2q8 + 2q10 - 2q12 + 2q16 - q18 + 3q20 - 2q22 - 2q28 + q30 |
HOMFLY-PT Polynomial: | - a-8 + a-8z2 + a-8z4 + 2a-6 + a-6z2 - 2a-6z4 - a-6z6 - 2a-4 - 3a-4z2 - 3a-4z4 - a-4z6 + 2a-2 + 3a-2z2 + a-2z4 |
Kauffman Polynomial: | a-12z4 - 3a-11z3 + 4a-11z5 + 2a-10z2 - 8a-10z4 + 7a-10z6 + a-9z - 7a-9z5 + 7a-9z7 - a-8 + 6a-8z2 - 11a-8z4 + 2a-8z6 + 4a-8z8 - a-7z + 9a-7z3 - 19a-7z5 + 9a-7z7 + a-7z9 - 2a-6 + 7a-6z2 - 4a-6z4 - 8a-6z6 + 6a-6z8 - 3a-5z + 11a-5z3 - 14a-5z5 + 4a-5z7 + a-5z9 - 2a-4 + 8a-4z2 - 6a-4z4 - 2a-4z6 + 2a-4z8 - a-3z + 5a-3z3 - 6a-3z5 + 2a-3z7 - 2a-2 + 5a-2z2 - 4a-2z4 + a-2z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, 4} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 1072. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-2 - 2q-1 + 7q - 10q2 - 4q3 + 28q4 - 25q5 - 22q6 + 67q7 - 36q8 - 59q9 + 108q10 - 32q11 - 97q12 + 128q13 - 16q14 - 115q15 + 117q16 + 2q17 - 101q18 + 80q19 + 12q20 - 63q21 + 37q22 + 10q23 - 24q24 + 10q25 + 3q26 - 4q27 + q28 |
3 | q-6 - 2q-5 + 2q-3 + 4q-2 - 9q-1 - 5 + 13q + 19q2 - 28q3 - 34q4 + 34q5 + 76q6 - 48q7 - 120q8 + 33q9 + 196q10 - 11q11 - 266q12 - 48q13 + 344q14 + 123q15 - 399q16 - 227q17 + 446q18 + 325q19 - 456q20 - 434q21 + 454q22 + 521q23 - 424q24 - 596q25 + 385q26 + 636q27 - 321q28 - 656q29 + 256q30 + 633q31 - 179q32 - 583q33 + 108q34 + 502q35 - 46q36 - 401q37 - 2q38 + 302q39 + 22q40 - 202q41 - 33q42 + 128q43 + 25q44 - 69q45 - 21q46 + 40q47 + 7q48 - 16q49 - 4q50 + 6q51 + 3q52 - 4q53 + q54 |
4 | q-12 - 2q-11 + 2q-9 - q-8 + 5q-7 - 11q-6 - q-5 + 13q-4 - q-3 + 18q-2 - 44q-1 - 19 + 43q + 25q2 + 73q3 - 127q4 - 112q5 + 57q6 + 112q7 + 285q8 - 214q9 - 358q10 - 104q11 + 182q12 + 791q13 - 83q14 - 667q15 - 624q16 - 61q17 + 1496q18 + 495q19 - 686q20 - 1400q21 - 879q22 + 1994q23 + 1420q24 - 113q25 - 2035q26 - 2149q27 + 1960q28 + 2299q29 + 946q30 - 2228q31 - 3449q32 + 1433q33 + 2837q34 + 2126q35 - 2005q36 - 4435q37 + 673q38 + 2985q39 + 3113q40 - 1515q41 - 4939q42 - 135q43 + 2753q44 + 3734q45 - 833q46 - 4849q47 - 861q48 + 2111q49 + 3815q50 - 41q51 - 4078q52 - 1309q53 + 1154q54 + 3244q55 + 602q56 - 2792q57 - 1271q58 + 243q59 + 2180q60 + 812q61 - 1476q62 - 825q63 - 242q64 + 1106q65 + 601q66 - 594q67 - 329q68 - 277q69 + 415q70 + 283q71 - 198q72 - 63q73 - 141q74 + 123q75 + 88q76 - 66q77 + 5q78 - 43q79 + 30q80 + 20q81 - 19q82 + 4q83 - 8q84 + 6q85 + 3q86 - 4q87 + q88 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 72]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], > X[16, 8, 17, 7], X[18, 12, 19, 11], X[20, 14, 1, 13], X[12, 20, 13, 19], > X[14, 18, 15, 17], X[6, 16, 7, 15]] |
In[3]:= | GaussCode[Knot[10, 72]] |
Out[3]= | GaussCode[1, -4, 3, -1, 2, -10, 5, -3, 4, -2, 6, -8, 7, -9, 10, -5, 9, -6, 8, > -7] |
In[4]:= | DTCode[Knot[10, 72]] |
Out[4]= | DTCode[4, 8, 10, 16, 2, 18, 20, 6, 14, 12] |
In[5]:= | br = BR[Knot[10, 72]] |
Out[5]= | BR[4, {1, 1, 1, 1, 2, 2, -1, 2, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 72]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 72]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 72]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 72]][t] |
Out[10]= | 2 9 16 2 3 19 - -- + -- - -- - 16 t + 9 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 72]][z] |
Out[11]= | 2 4 6 1 + 2 z - 3 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 72]} |
In[13]:= | {KnotDet[Knot[10, 72]], KnotSignature[Knot[10, 72]]} |
Out[13]= | {73, 4} |
In[14]:= | Jones[Knot[10, 72]][q] |
Out[14]= | 2 3 4 5 6 7 8 9 10 1 - 2 q + 5 q - 8 q + 11 q - 12 q + 12 q - 10 q + 7 q - 4 q + q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 72]} |
In[16]:= | A2Invariant[Knot[10, 72]][q] |
Out[16]= | 4 6 8 10 12 16 18 20 22 28 30 1 + q + 2 q - 2 q + 2 q - 2 q + 2 q - q + 3 q - 2 q - 2 q + q |
In[17]:= | HOMFLYPT[Knot[10, 72]][a, z] |
Out[17]= | 2 2 2 2 4 4 4 4 6 6 -8 2 2 2 z z 3 z 3 z z 2 z 3 z z z z -a + -- - -- + -- + -- + -- - ---- + ---- + -- - ---- - ---- + -- - -- - -- 6 4 2 8 6 4 2 8 6 4 2 6 4 a a a a a a a a a a a a a |
In[18]:= | Kauffman[Knot[10, 72]][a, z] |
Out[18]= | 2 2 2 2 2 -8 2 2 2 z z 3 z z 2 z 6 z 7 z 8 z 5 z -a - -- - -- - -- + -- - -- - --- - -- + ---- + ---- + ---- + ---- + ---- - 6 4 2 9 7 5 3 10 8 6 4 2 a a a a a a a a a a a a 3 3 3 3 4 4 4 4 4 4 3 z 9 z 11 z 5 z z 8 z 11 z 4 z 6 z 4 z > ---- + ---- + ----- + ---- + --- - ---- - ----- - ---- - ---- - ---- + 11 7 5 3 12 10 8 6 4 2 a a a a a a a a a a 5 5 5 5 5 6 6 6 6 6 4 z 7 z 19 z 14 z 6 z 7 z 2 z 8 z 2 z z > ---- - ---- - ----- - ----- - ---- + ---- + ---- - ---- - ---- + -- + 11 9 7 5 3 10 8 6 4 2 a a a a a a a a a a 7 7 7 7 8 8 8 9 9 7 z 9 z 4 z 2 z 4 z 6 z 2 z z z > ---- + ---- + ---- + ---- + ---- + ---- + ---- + -- + -- 9 7 5 3 8 6 4 7 5 a a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 72]], Vassiliev[3][Knot[10, 72]]} |
Out[19]= | {2, 4} |
In[20]:= | Kh[Knot[10, 72]][q, t] |
Out[20]= | 3 3 5 1 q q 5 7 7 2 9 2 9 3 4 q + 2 q + ---- + - + -- + 5 q t + 3 q t + 6 q t + 5 q t + 6 q t + 2 t t q t 11 3 11 4 13 4 13 5 15 5 15 6 > 6 q t + 6 q t + 6 q t + 4 q t + 6 q t + 3 q t + 17 6 17 7 19 7 21 8 > 4 q t + q t + 3 q t + q t |
In[21]:= | ColouredJones[Knot[10, 72], 2][q] |
Out[21]= | -2 2 2 3 4 5 6 7 8 9 q - - + 7 q - 10 q - 4 q + 28 q - 25 q - 22 q + 67 q - 36 q - 59 q + q 10 11 12 13 14 15 16 17 > 108 q - 32 q - 97 q + 128 q - 16 q - 115 q + 117 q + 2 q - 18 19 20 21 22 23 24 25 > 101 q + 80 q + 12 q - 63 q + 37 q + 10 q - 24 q + 10 q + 26 27 28 > 3 q - 4 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1072 |
|