© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1071Visit 1071's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1071's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X9,19,10,18 X15,20,16,1 X19,16,20,17 X17,11,18,10 X7283 |
Gauss Code: | {-1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9, 6, -8, 7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 12 2 18 14 6 20 10 16 |
Minimum Braid Representative:
Length is 10, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 7t-2 - 18t-1 + 25 - 18t + 7t2 - t3 |
Conway Polynomial: | 1 + z2 + z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n156, K11n179, ...} |
Determinant and Signature: | {77, 0} |
Jones Polynomial: | - q-5 + 3q-4 - 6q-3 + 10q-2 - 12q-1 + 13 - 12q + 10q2 - 6q3 + 3q4 - q5 |
Other knots (up to mirrors) with the same Jones Polynomial: | {10104, ...} |
A2 (sl(3)) Invariant: | - q-16 + q-12 - 2q-10 + 3q-8 + q-6 - q-4 + 2q-2 - 3 + 2q2 - q4 + q6 + 3q8 - 2q10 + q12 - q16 |
HOMFLY-PT Polynomial: | - a-4 - a-4z2 + 3a-2 + 4a-2z2 + 2a-2z4 - 3 - 5z2 - 3z4 - z6 + 3a2 + 4a2z2 + 2a2z4 - a4 - a4z2 |
Kauffman Polynomial: | a-5z - 2a-5z3 + a-5z5 - a-4 + 4a-4z2 - 6a-4z4 + 3a-4z6 + a-3z - 5a-3z5 + 4a-3z7 - 3a-2 + 10a-2z2 - 12a-2z4 + 2a-2z6 + 3a-2z8 - a-1z + 7a-1z3 - 15a-1z5 + 8a-1z7 + a-1z9 - 3 + 12z2 - 12z4 - 2z6 + 6z8 - az + 7az3 - 15az5 + 8az7 + az9 - 3a2 + 10a2z2 - 12a2z4 + 2a2z6 + 3a2z8 + a3z - 5a3z5 + 4a3z7 - a4 + 4a4z2 - 6a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1071. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 3q-14 + q-13 + 9q-12 - 17q-11 + q-10 + 37q-9 - 47q-8 - 12q-7 + 89q-6 - 77q-5 - 42q-4 + 140q-3 - 87q-2 - 73q-1 + 161 - 73q - 87q2 + 140q3 - 42q4 - 77q5 + 89q6 - 12q7 - 47q8 + 37q9 + q10 - 17q11 + 9q12 + q13 - 3q14 + q15 |
3 | - q-30 + 3q-29 - q-28 - 4q-27 - 2q-26 + 14q-25 + 2q-24 - 29q-23 - 8q-22 + 56q-21 + 25q-20 - 96q-19 - 62q-18 + 149q-17 + 124q-16 - 203q-15 - 218q-14 + 243q-13 + 349q-12 - 275q-11 - 482q-10 + 264q-9 + 631q-8 - 238q-7 - 753q-6 + 178q-5 + 859q-4 - 116q-3 - 914q-2 + 33q-1 + 941 + 41q - 914q2 - 124q3 + 859q4 + 186q5 - 754q6 - 245q7 + 633q8 + 271q9 - 485q10 - 282q11 + 352q12 + 249q13 - 220q14 - 209q15 + 126q16 + 153q17 - 62q18 - 98q19 + 24q20 + 57q21 - 8q22 - 29q23 + 2q24 + 14q25 - 2q26 - 4q27 - q28 + 3q29 - q30 |
4 | q-50 - 3q-49 + q-48 + 4q-47 - 3q-46 + 5q-45 - 17q-44 + 6q-43 + 25q-42 - 13q-41 + 10q-40 - 73q-39 + 16q-38 + 110q-37 - 2q-36 + 12q-35 - 264q-34 - 26q-33 + 321q-32 + 162q-31 + 99q-30 - 724q-29 - 335q-28 + 590q-27 + 676q-26 + 572q-25 - 1399q-24 - 1192q-23 + 549q-22 + 1507q-21 + 1777q-20 - 1876q-19 - 2556q-18 - 201q-17 + 2218q-16 + 3609q-15 - 1700q-14 - 3902q-13 - 1602q-12 + 2357q-11 + 5468q-10 - 885q-9 - 4696q-8 - 3115q-7 + 1896q-6 + 6734q-5 + 180q-4 - 4763q-3 - 4252q-2 + 1074q-1 + 7163 + 1181q - 4190q2 - 4819q3 + 77q4 + 6730q5 + 1993q6 - 3066q7 - 4751q8 - 968q9 + 5481q10 + 2453q11 - 1578q12 - 3978q13 - 1775q14 + 3644q15 + 2332q16 - 179q17 - 2647q18 - 1966q19 + 1799q20 + 1622q21 + 596q22 - 1253q23 - 1487q24 + 557q25 + 746q26 + 642q27 - 345q28 - 771q29 + 72q30 + 179q31 + 345q32 - 17q33 - 273q34 + q35 - 3q36 + 113q37 + 19q38 - 73q39 + 9q40 - 13q41 + 25q42 + 6q43 - 17q44 + 5q45 - 3q46 + 4q47 + q48 - 3q49 + q50 |
5 | - q-75 + 3q-74 - q-73 - 4q-72 + 3q-71 - 2q-69 + 9q-68 - 2q-67 - 20q-66 + 6q-65 + 16q-64 + 8q-63 + 16q-62 - 24q-61 - 71q-60 - 20q-59 + 79q-58 + 121q-57 + 73q-56 - 104q-55 - 294q-54 - 212q-53 + 162q-52 + 546q-51 + 506q-50 - 119q-49 - 922q-48 - 1085q-47 - 128q-46 + 1375q-45 + 2044q-44 + 778q-43 - 1770q-42 - 3398q-41 - 2093q-40 + 1826q-39 + 5130q-38 + 4247q-37 - 1219q-36 - 6989q-35 - 7295q-34 - 407q-33 + 8549q-32 + 11150q-31 + 3344q-30 - 9473q-29 - 15468q-28 - 7435q-27 + 9182q-26 + 19702q-25 + 12749q-24 - 7689q-23 - 23467q-22 - 18487q-21 + 4853q-20 + 26142q-19 + 24478q-18 - 1073q-17 - 27778q-16 - 29823q-15 - 3353q-14 + 28141q-13 + 34465q-12 + 7865q-11 - 27557q-10 - 37918q-9 - 12228q-8 + 26109q-7 + 40416q-6 + 16071q-5 - 24130q-4 - 41716q-3 - 19497q-2 + 21627q-1 + 42219 + 22324q - 18770q2 - 41656q3 - 24759q4 + 15388q5 + 40331q6 + 26655q7 - 11641q8 - 37881q9 - 28050q10 + 7409q11 + 34543q12 + 28652q13 - 3009q14 - 30073q15 - 28387q16 - 1369q17 + 24892q18 + 26921q19 + 5203q20 - 19005q21 - 24433q22 - 8189q23 + 13253q24 + 20804q25 + 9884q26 - 7789q27 - 16592q28 - 10364q29 + 3466q30 + 12145q31 + 9528q32 - 262q33 - 8044q34 - 7934q35 - 1560q36 + 4698q37 + 5905q38 + 2265q39 - 2274q40 - 3942q41 - 2190q42 + 777q43 + 2358q44 + 1694q45 - 38q46 - 1225q47 - 1123q48 - 218q49 + 548q50 + 645q51 + 232q52 - 208q53 - 335q54 - 141q55 + 63q56 + 132q57 + 93q58 - 13q59 - 73q60 - 28q61 + 14q62 + 8q63 + 17q64 + 6q65 - 20q66 - 2q67 + 9q68 - 2q69 + 3q71 - 4q72 - q73 + 3q74 - q75 |
6 | q-105 - 3q-104 + q-103 + 4q-102 - 3q-101 - 3q-99 + 10q-98 - 13q-97 - 3q-96 + 27q-95 - 16q-94 - 10q-93 - 18q-92 + 42q-91 - 20q-90 - 7q-89 + 97q-88 - 49q-87 - 79q-86 - 114q-85 + 104q-84 + 3q-83 + 81q-82 + 366q-81 - 67q-80 - 320q-79 - 589q-78 - 17q-77 - 6q-76 + 509q-75 + 1427q-74 + 440q-73 - 677q-72 - 2102q-71 - 1368q-70 - 1008q-69 + 1237q-68 + 4503q-67 + 3493q-66 + 488q-65 - 4750q-64 - 6038q-63 - 6499q-62 - 403q-61 + 9763q-60 + 12688q-59 + 8682q-58 - 4461q-57 - 14284q-56 - 22005q-55 - 12553q-54 + 11165q-53 + 28508q-52 + 31626q-51 + 10095q-50 - 17786q-49 - 48017q-48 - 45190q-47 - 6076q-46 + 40128q-45 + 69344q-44 + 50932q-43 + 1388q-42 - 70861q-41 - 97296q-40 - 55236q-39 + 26906q-38 + 105182q-37 + 115371q-36 + 56486q-35 - 67729q-34 - 149140q-33 - 131093q-32 - 23730q-31 + 114899q-30 + 180916q-29 + 139141q-28 - 27261q-27 - 175561q-26 - 208570q-25 - 100992q-24 + 88504q-23 + 222168q-22 + 222561q-21 + 38345q-20 - 167495q-19 - 262541q-18 - 178507q-17 + 38316q-16 + 230811q-15 + 283046q-14 + 104928q-13 - 135952q-12 - 285368q-11 - 235908q-10 - 15153q-9 + 215957q-8 + 314357q-7 + 156541q-6 - 96924q-5 - 284321q-4 - 269454q-3 - 60743q-2 + 189245q-1 + 322667 + 192187q - 56989q2 - 267400q3 - 284929q4 - 99859q5 + 153420q6 + 313167q7 + 217193q8 - 12878q9 - 234321q10 - 285072q11 - 136883q12 + 103990q13 + 283013q14 + 231417q15 + 38263q16 - 179823q17 - 264145q18 - 168064q19 + 40067q20 + 226146q21 + 225359q22 + 88395q23 - 105180q24 - 214439q25 - 179362q26 - 25843q27 + 145658q28 + 188775q29 + 118633q30 - 27071q31 - 139732q32 - 157830q33 - 70706q34 + 61506q35 + 125521q36 + 113841q37 + 28514q38 - 61642q39 - 107682q40 - 78635q41 + 1062q42 + 58082q43 + 79069q44 + 46334q45 - 6912q46 - 52069q47 - 56318q48 - 22346q49 + 11689q50 + 37649q51 + 34903q52 + 14126q53 - 14288q54 - 26781q55 - 18829q56 - 6146q57 + 10267q58 + 16071q59 + 12671q60 + 486q61 - 7743q62 - 8228q63 - 6429q64 + 105q65 + 4320q66 + 5766q67 + 2140q68 - 890q69 - 1860q70 - 2754q71 - 1100q72 + 417q73 + 1679q74 + 820q75 + 163q76 - 23q77 - 704q78 - 445q79 - 127q80 + 374q81 + 129q82 + 43q83 + 122q84 - 120q85 - 94q86 - 59q87 + 93q88 - 4q89 - 17q90 + 44q91 - 18q92 - 11q93 - 16q94 + 27q95 - 3q96 - 13q97 + 10q98 - 3q99 - 3q101 + 4q102 + q103 - 3q104 + q105 |
7 | - q-140 + 3q-139 - q-138 - 4q-137 + 3q-136 + 3q-134 - 5q-133 - 6q-132 + 18q-131 - 4q-130 - 17q-129 + 10q-128 + 4q-127 + 19q-126 - 20q-125 - 46q-124 + 48q-123 - 4q-122 - 32q-121 + 39q-120 + 25q-119 + 98q-118 - 42q-117 - 195q-116 - q-115 - 70q-114 - 44q-113 + 192q-112 + 196q-111 + 442q-110 + 88q-109 - 569q-108 - 483q-107 - 735q-106 - 395q-105 + 541q-104 + 1035q-103 + 1990q-102 + 1365q-101 - 706q-100 - 2015q-99 - 3768q-98 - 3350q-97 - 364q-96 + 2757q-95 + 7170q-94 + 7818q-93 + 3329q-92 - 2922q-91 - 11692q-90 - 15397q-89 - 10549q-88 - 164q-87 + 16498q-86 + 27496q-85 + 24774q-84 + 9772q-83 - 18945q-82 - 43446q-81 - 48559q-80 - 31096q-79 + 13260q-78 + 60143q-77 + 83625q-76 + 70271q-75 + 8490q-74 - 71267q-73 - 127792q-72 - 131497q-71 - 56221q-70 + 65113q-69 + 173949q-68 + 216128q-67 + 139438q-66 - 27811q-65 - 209546q-64 - 318303q-63 - 263003q-62 - 55025q-61 + 216201q-60 + 424638q-59 + 425070q-58 + 194438q-57 - 174862q-56 - 516053q-55 - 613950q-54 - 391940q-53 + 70019q-52 + 568347q-51 + 808886q-50 + 640217q-49 + 106912q-48 - 561821q-47 - 986055q-46 - 919307q-45 - 350263q-44 + 482769q-43 + 1118353q-42 + 1203823q-41 + 646595q-40 - 329709q-39 - 1189743q-38 - 1466308q-37 - 968596q-36 + 113341q-35 + 1189349q-34 + 1682678q-33 + 1291084q-32 + 146973q-31 - 1122928q-30 - 1839147q-29 - 1586172q-28 - 425443q-27 + 1001339q-26 + 1930889q-25 + 1836854q-24 + 698683q-23 - 844916q-22 - 1963836q-21 - 2032365q-20 - 947289q-19 + 672252q-18 + 1949453q-17 + 2173423q-16 + 1159908q-15 - 500698q-14 - 1901929q-13 - 2265344q-12 - 1333529q-11 + 339718q-10 + 1834551q-9 + 2319234q-8 + 1471175q-7 - 194546q-6 - 1755851q-5 - 2343857q-4 - 1580758q-3 + 61475q-2 + 1669944q-1 + 2348802 + 1670691q + 63986q2 - 1575157q3 - 2335919q4 - 1748494q5 - 191775q6 + 1465819q7 + 2306060q8 + 1818177q9 + 327516q10 - 1334234q11 - 2252020q12 - 1878611q13 - 477017q14 + 1172133q15 + 2166570q16 + 1924202q17 + 638143q18 - 974677q19 - 2038995q20 - 1944029q21 - 804916q22 + 741680q23 + 1862512q24 + 1925041q25 + 963299q26 - 480434q27 - 1633207q28 - 1854829q29 - 1096577q30 + 206118q31 + 1357122q32 + 1724267q33 + 1184229q34 + 60784q35 - 1046266q36 - 1533060q37 - 1212370q38 - 294998q39 + 724519q40 + 1289213q41 + 1169976q42 + 474654q43 - 415748q44 - 1012012q45 - 1061619q46 - 583820q47 + 149273q48 + 726787q49 + 897896q50 + 617416q51 + 56550q52 - 460322q53 - 703245q54 - 583385q55 - 189446q56 + 237245q57 + 502190q58 + 498162q59 + 252161q60 - 71005q61 - 319674q62 - 386292q63 - 256579q64 - 34028q65 + 172974q66 + 270081q67 + 221631q68 + 85394q69 - 69313q70 - 167942q71 - 168206q72 - 96800q73 + 7196q74 + 90294q75 + 112851q76 + 84042q77 + 22063q78 - 38785q79 - 66529q80 - 61860q81 - 29584q82 + 10089q83 + 33822q84 + 39508q85 + 25611q86 + 2682q87 - 13892q88 - 22048q89 - 18002q90 - 6224q91 + 3756q92 + 10858q93 + 10843q94 + 5324q95 + 249q96 - 4419q97 - 5583q98 - 3589q99 - 1414q100 + 1559q101 + 2739q102 + 1848q103 + 1035q104 - 329q105 - 981q106 - 835q107 - 834q108 - 6q109 + 499q110 + 327q111 + 305q112 + 13q113 - 72q114 - 40q115 - 237q116 - 67q117 + 95q118 + 35q119 + 50q120 - 25q121 - q122 + 46q123 - 49q124 - 22q125 + 19q126 + 5q127 + 10q128 - 17q129 - 4q130 + 18q131 - 6q132 - 5q133 + 3q134 + 3q136 - 4q137 - q138 + 3q139 - q140 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 71]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12], > X[13, 7, 14, 6], X[9, 19, 10, 18], X[15, 20, 16, 1], X[19, 16, 20, 17], > X[17, 11, 18, 10], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 71]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9, 6, -8, > 7] |
In[4]:= | DTCode[Knot[10, 71]] |
Out[4]= | DTCode[4, 8, 12, 2, 18, 14, 6, 20, 10, 16] |
In[5]:= | br = BR[Knot[10, 71]] |
Out[5]= | BR[5, {-1, -1, 2, -1, -3, 2, 2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[10, 71]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 71]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 71]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 71]][t] |
Out[10]= | -3 7 18 2 3 25 - t + -- - -- - 18 t + 7 t - t 2 t t |
In[11]:= | Conway[Knot[10, 71]][z] |
Out[11]= | 2 4 6 1 + z + z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 71], Knot[11, NonAlternating, 156], Knot[11, NonAlternating, 179]} |
In[13]:= | {KnotDet[Knot[10, 71]], KnotSignature[Knot[10, 71]]} |
Out[13]= | {77, 0} |
In[14]:= | Jones[Knot[10, 71]][q] |
Out[14]= | -5 3 6 10 12 2 3 4 5 13 - q + -- - -- + -- - -- - 12 q + 10 q - 6 q + 3 q - q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 71], Knot[10, 104]} |
In[16]:= | A2Invariant[Knot[10, 71]][q] |
Out[16]= | -16 -12 2 3 -6 -4 2 2 4 6 8 10 -3 - q + q - --- + -- + q - q + -- + 2 q - q + q + 3 q - 2 q + 10 8 2 q q q 12 16 > q - q |
In[17]:= | HOMFLYPT[Knot[10, 71]][a, z] |
Out[17]= | 2 2 4 -4 3 2 4 2 z 4 z 2 2 4 2 4 2 z -3 - a + -- + 3 a - a - 5 z - -- + ---- + 4 a z - a z - 3 z + ---- + 2 4 2 2 a a a a 2 4 6 > 2 a z - z |
In[18]:= | Kauffman[Knot[10, 71]][a, z] |
Out[18]= | 2 -4 3 2 4 z z z 3 5 2 4 z -3 - a - -- - 3 a - a + -- + -- - - - a z + a z + a z + 12 z + ---- + 2 5 3 a 4 a a a a 2 3 3 10 z 2 2 4 2 2 z 7 z 3 5 3 4 > ----- + 10 a z + 4 a z - ---- + ---- + 7 a z - 2 a z - 12 z - 2 5 a a a 4 4 5 5 5 6 z 12 z 2 4 4 4 z 5 z 15 z 5 3 5 > ---- - ----- - 12 a z - 6 a z + -- - ---- - ----- - 15 a z - 5 a z + 4 2 5 3 a a a a a 6 6 7 7 5 5 6 3 z 2 z 2 6 4 6 4 z 8 z 7 > a z - 2 z + ---- + ---- + 2 a z + 3 a z + ---- + ---- + 8 a z + 4 2 3 a a a a 8 9 3 7 8 3 z 2 8 z 9 > 4 a z + 6 z + ---- + 3 a z + -- + a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[10, 71]], Vassiliev[3][Knot[10, 71]]} |
Out[19]= | {1, 0} |
In[20]:= | Kh[Knot[10, 71]][q, t] |
Out[20]= | 7 1 2 1 4 2 6 4 6 6 - + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 5 3 7 3 7 4 9 4 > 6 q t + 6 q t + 4 q t + 6 q t + 2 q t + 4 q t + q t + 2 q t + 11 5 > q t |
In[21]:= | ColouredJones[Knot[10, 71], 2][q] |
Out[21]= | -15 3 -13 9 17 -10 37 47 12 89 77 42 161 + q - --- + q + --- - --- + q + -- - -- - -- + -- - -- - -- + 14 12 11 9 8 7 6 5 4 q q q q q q q q q 140 87 73 2 3 4 5 6 7 > --- - -- - -- - 73 q - 87 q + 140 q - 42 q - 77 q + 89 q - 12 q - 3 2 q q q 8 9 10 11 12 13 14 15 > 47 q + 37 q + q - 17 q + 9 q + q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1071 |
|