© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1073Visit 1073's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1073's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X10,6,11,5 X8394 X2,9,3,10 X16,14,17,13 X14,7,15,8 X6,15,7,16 X20,17,1,18 X18,11,19,12 X12,19,13,20 |
Gauss Code: | {1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 9, -10, 5, -6, 7, -5, 8, -9, 10, -8} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 14 2 18 16 6 20 12 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 7t-2 + 20t-1 - 27 + 20t - 7t2 + t3 |
Conway Polynomial: | 1 + z2 - z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {83, -2} |
Jones Polynomial: | - q-8 + 3q-7 - 6q-6 + 10q-5 - 13q-4 + 14q-3 - 13q-2 + 11q-1 - 7 + 4q - q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {1083, ...} |
A2 (sl(3)) Invariant: | - q-26 - q-24 + 2q-22 + 3q-16 - 3q-14 - q-10 - q-8 + 3q-6 - 2q-4 + 4q-2 - q2 + 2q4 - q6 |
HOMFLY-PT Polynomial: | - z2 - z4 + 3a2 + 5a2z2 + 3a2z4 + a2z6 - 4a4 - 6a4z2 - 3a4z4 + 3a6 + 3a6z2 - a8 |
Kauffman Polynomial: | - a-1z3 + a-1z5 + 3z2 - 7z4 + 4z6 - az + 4az3 - 10az5 + 6az7 - 3a2 + 12a2z2 - 16a2z4 + 2a2z6 + 4a2z8 - 3a3z + 16a3z3 - 26a3z5 + 12a3z7 + a3z9 - 4a4 + 17a4z2 - 17a4z4 - 2a4z6 + 7a4z8 - 3a5z + 14a5z3 - 21a5z5 + 10a5z7 + a5z9 - 3a6 + 12a6z2 - 14a6z4 + 3a6z6 + 3a6z8 + a7z3 - 5a7z5 + 4a7z7 - a8 + 4a8z2 - 6a8z4 + 3a8z6 + a9z - 2a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1073. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - 3q-22 + q-21 + 9q-20 - 17q-19 + 2q-18 + 36q-17 - 50q-16 - 6q-15 + 90q-14 - 90q-13 - 32q-12 + 151q-11 - 111q-10 - 66q-9 + 182q-8 - 100q-7 - 86q-6 + 166q-5 - 64q-4 - 83q-3 + 113q-2 - 24q-1 - 57 + 52q - q2 - 24q3 + 13q4 + 2q5 - 4q6 + q7 |
3 | - q-45 + 3q-44 - q-43 - 4q-42 - 2q-41 + 14q-40 + q-39 - 28q-38 - 5q-37 + 56q-36 + 15q-35 - 100q-34 - 40q-33 + 164q-32 + 87q-31 - 242q-30 - 167q-29 + 324q-28 + 288q-27 - 405q-26 - 431q-25 + 454q-24 + 600q-23 - 476q-22 - 767q-21 + 464q-20 + 911q-19 - 418q-18 - 1019q-17 + 344q-16 + 1086q-15 - 257q-14 - 1098q-13 + 152q-12 + 1068q-11 - 52q-10 - 981q-9 - 57q-8 + 869q-7 + 136q-6 - 711q-5 - 206q-4 + 558q-3 + 223q-2 - 384q-1 - 229 + 252q + 188q2 - 136q3 - 144q4 + 66q5 + 90q6 - 20q7 - 54q8 + 7q9 + 23q10 - 8q12 - 2q13 + 4q14 - q15 |
4 | q-74 - 3q-73 + q-72 + 4q-71 - 3q-70 + 5q-69 - 17q-68 + 7q-67 + 24q-66 - 16q-65 + 10q-64 - 69q-63 + 28q-62 + 108q-61 - 28q-60 - 9q-59 - 249q-58 + 50q-57 + 360q-56 + 68q-55 - 48q-54 - 751q-53 - 85q-52 + 859q-51 + 543q-50 + 89q-49 - 1737q-48 - 748q-47 + 1401q-46 + 1636q-45 + 860q-44 - 2996q-43 - 2230q-42 + 1445q-41 + 3129q-40 + 2562q-39 - 3896q-38 - 4246q-37 + 599q-36 + 4359q-35 + 4846q-34 - 3954q-33 - 6039q-32 - 896q-31 + 4805q-30 + 6905q-29 - 3227q-28 - 6996q-27 - 2462q-26 + 4423q-25 + 8149q-24 - 2056q-23 - 6972q-22 - 3688q-21 + 3403q-20 + 8387q-19 - 684q-18 - 6034q-17 - 4414q-16 + 1912q-15 + 7619q-14 + 673q-13 - 4334q-12 - 4465q-11 + 247q-10 + 5921q-9 + 1625q-8 - 2259q-7 - 3700q-6 - 1036q-5 + 3695q-4 + 1779q-3 - 503q-2 - 2333q-1 - 1451 + 1680q + 1218q2 + 376q3 - 1009q4 - 1085q5 + 480q6 + 503q7 + 440q8 - 242q9 - 508q10 + 60q11 + 98q12 + 212q13 - 8q14 - 152q15 - 5q17 + 55q18 + 11q19 - 29q20 + q21 - 5q22 + 8q23 + 2q24 - 4q25 + q26 |
5 | - q-110 + 3q-109 - q-108 - 4q-107 + 3q-106 - 2q-104 + 9q-103 - 3q-102 - 19q-101 + 9q-100 + 16q-99 + 4q-98 + 10q-97 - 30q-96 - 64q-95 + 9q-94 + 98q-93 + 100q-92 + 13q-91 - 170q-90 - 279q-89 - 68q-88 + 343q-87 + 559q-86 + 240q-85 - 531q-84 - 1086q-83 - 662q-82 + 717q-81 + 1909q-80 + 1510q-79 - 735q-78 - 3059q-77 - 2979q-76 + 299q-75 + 4429q-74 + 5298q-73 + 923q-72 - 5779q-71 - 8502q-70 - 3302q-69 + 6661q-68 + 12442q-67 + 7145q-66 - 6549q-65 - 16808q-64 - 12471q-63 + 5075q-62 + 20888q-61 + 19035q-60 - 1794q-59 - 24226q-58 - 26358q-57 - 3051q-56 + 26204q-55 + 33617q-54 + 9323q-53 - 26595q-52 - 40284q-51 - 16288q-50 + 25424q-49 + 45717q-48 + 23333q-47 - 22892q-46 - 49654q-45 - 29929q-44 + 19450q-43 + 52032q-42 + 35634q-41 - 15480q-40 - 52905q-39 - 40256q-38 + 11196q-37 + 52489q-36 + 43817q-35 - 6851q-34 - 50921q-33 - 46231q-32 + 2362q-31 + 48204q-30 + 47752q-29 + 2144q-28 - 44442q-27 - 48110q-26 - 6773q-25 + 39498q-24 + 47465q-23 + 11246q-22 - 33551q-21 - 45385q-20 - 15444q-19 + 26651q-18 + 42086q-17 + 18749q-16 - 19299q-15 - 37171q-14 - 21046q-13 + 11920q-12 + 31323q-11 + 21650q-10 - 5299q-9 - 24457q-8 - 20792q-7 - 194q-6 + 17773q-5 + 18322q-4 + 3868q-3 - 11356q-2 - 14951q-1 - 5903 + 6278q + 11080q2 + 6246q3 - 2442q4 - 7475q5 - 5555q6 + 221q7 + 4402q8 + 4257q9 + 925q10 - 2289q11 - 2891q12 - 1114q13 + 912q14 + 1696q15 + 1010q16 - 259q17 - 914q18 - 651q19 - 15q20 + 391q21 + 390q22 + 97q23 - 173q24 - 196q25 - 59q26 + 58q27 + 70q28 + 46q29 - 9q30 - 46q31 - 12q32 + 11q33 + 5q34 + 4q35 + 5q36 - 8q37 - 2q38 + 4q39 - q40 |
6 | q-153 - 3q-152 + q-151 + 4q-150 - 3q-149 - 3q-147 + 10q-146 - 13q-145 - 2q-144 + 26q-143 - 19q-142 - 10q-141 - 14q-140 + 48q-139 - 20q-138 - 6q-137 + 87q-136 - 77q-135 - 89q-134 - 85q-133 + 162q-132 + 43q-131 + 88q-130 + 291q-129 - 249q-128 - 453q-127 - 504q-126 + 299q-125 + 367q-124 + 725q-123 + 1179q-122 - 432q-121 - 1624q-120 - 2299q-119 - 360q-118 + 889q-117 + 3006q-116 + 4639q-115 + 824q-114 - 3764q-113 - 7712q-112 - 4963q-111 - 718q-110 + 7515q-109 + 14550q-108 + 8773q-107 - 3439q-106 - 18099q-105 - 19668q-104 - 12557q-103 + 9375q-102 + 33170q-101 + 32755q-100 + 10952q-99 - 26772q-98 - 47814q-97 - 47644q-96 - 7043q-95 + 51529q-94 + 77222q-93 + 56081q-92 - 13719q-91 - 77876q-90 - 110955q-89 - 61599q-88 + 45298q-87 + 127673q-86 + 136431q-85 + 43312q-84 - 81848q-83 - 184327q-82 - 157047q-81 - 8930q-80 + 152717q-79 + 229746q-78 + 144548q-77 - 36508q-76 - 233351q-75 - 266947q-74 - 108265q-73 + 129465q-72 + 299383q-71 + 260334q-70 + 52358q-69 - 235511q-68 - 353478q-67 - 221298q-66 + 64742q-65 + 323626q-64 + 353656q-63 + 153731q-62 - 197255q-61 - 396214q-60 - 313815q-59 - 13867q-58 + 308004q-57 + 406706q-56 + 238295q-55 - 141303q-54 - 399730q-53 - 371723q-52 - 83847q-51 + 270326q-50 + 423848q-49 + 296595q-48 - 83357q-47 - 377429q-46 - 399768q-45 - 140794q-44 + 220484q-43 + 414974q-42 + 334111q-41 - 23710q-40 - 334412q-39 - 404833q-38 - 190614q-37 + 155815q-36 + 381039q-35 + 354768q-34 + 42953q-33 - 265787q-32 - 383771q-31 - 233442q-30 + 72448q-29 + 314825q-28 + 350715q-27 + 111873q-26 - 169328q-25 - 326396q-24 - 255369q-23 - 19462q-22 + 215010q-21 + 307836q-20 + 162216q-19 - 60200q-18 - 231371q-17 - 237228q-16 - 92576q-15 + 100467q-14 + 224103q-13 + 169919q-12 + 29122q-11 - 120110q-10 - 175737q-9 - 119636q-8 + 6659q-7 + 122734q-6 + 131292q-5 + 70285q-4 - 29381q-3 - 95029q-2 - 98262q-1 - 39205 + 40497q + 71447q2 + 63341q3 + 16101q4 - 30334q5 - 54756q6 - 40193q7 - 1149q8 + 23437q9 + 34991q10 + 21987q11 + 803q12 - 19489q13 - 22247q14 - 9581q15 + 1241q16 + 11873q17 + 12056q18 + 6610q19 - 3334q20 - 7543q21 - 5348q22 - 2962q23 + 1917q24 + 3768q25 + 3740q26 + 365q27 - 1478q28 - 1455q29 - 1615q30 - 195q31 + 621q32 + 1215q33 + 324q34 - 135q35 - 157q36 - 448q37 - 178q38 + 12q39 + 286q40 + 61q41 - 5q42 + 22q43 - 80q44 - 40q45 - 21q46 + 60q47 + 3q48 - 10q49 + 13q50 - 10q51 - 4q52 - 5q53 + 8q54 + 2q55 - 4q56 + q57 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 73]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], > X[16, 14, 17, 13], X[14, 7, 15, 8], X[6, 15, 7, 16], X[20, 17, 1, 18], > X[18, 11, 19, 12], X[12, 19, 13, 20]] |
In[3]:= | GaussCode[Knot[10, 73]] |
Out[3]= | GaussCode[1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 9, -10, 5, -6, 7, -5, 8, -9, 10, > -8] |
In[4]:= | DTCode[Knot[10, 73]] |
Out[4]= | DTCode[4, 8, 10, 14, 2, 18, 16, 6, 20, 12] |
In[5]:= | br = BR[Knot[10, 73]] |
Out[5]= | BR[5, {-1, -1, -2, 1, -2, -1, 3, -2, 3, -4, 3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 73]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 73]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 73]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 73]][t] |
Out[10]= | -3 7 20 2 3 -27 + t - -- + -- + 20 t - 7 t + t 2 t t |
In[11]:= | Conway[Knot[10, 73]][z] |
Out[11]= | 2 4 6 1 + z - z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 73]} |
In[13]:= | {KnotDet[Knot[10, 73]], KnotSignature[Knot[10, 73]]} |
Out[13]= | {83, -2} |
In[14]:= | Jones[Knot[10, 73]][q] |
Out[14]= | -8 3 6 10 13 14 13 11 2 -7 - q + -- - -- + -- - -- + -- - -- + -- + 4 q - q 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 73], Knot[10, 83]} |
In[16]:= | A2Invariant[Knot[10, 73]][q] |
Out[16]= | -26 -24 2 3 3 -10 -8 3 2 4 2 4 6 -q - q + --- + --- - --- - q - q + -- - -- + -- - q + 2 q - q 22 16 14 6 4 2 q q q q q q |
In[17]:= | HOMFLYPT[Knot[10, 73]][a, z] |
Out[17]= | 2 4 6 8 2 2 2 4 2 6 2 4 2 4 3 a - 4 a + 3 a - a - z + 5 a z - 6 a z + 3 a z - z + 3 a z - 4 4 2 6 > 3 a z + a z |
In[18]:= | Kauffman[Knot[10, 73]][a, z] |
Out[18]= | 2 4 6 8 3 5 9 2 2 2 -3 a - 4 a - 3 a - a - a z - 3 a z - 3 a z + a z + 3 z + 12 a z + 3 4 2 6 2 8 2 z 3 3 3 5 3 7 3 > 17 a z + 12 a z + 4 a z - -- + 4 a z + 16 a z + 14 a z + a z - a 5 9 3 4 2 4 4 4 6 4 8 4 z 5 > 2 a z - 7 z - 16 a z - 17 a z - 14 a z - 6 a z + -- - 10 a z - a 3 5 5 5 7 5 9 5 6 2 6 4 6 > 26 a z - 21 a z - 5 a z + a z + 4 z + 2 a z - 2 a z + 6 6 8 6 7 3 7 5 7 7 7 2 8 > 3 a z + 3 a z + 6 a z + 12 a z + 10 a z + 4 a z + 4 a z + 4 8 6 8 3 9 5 9 > 7 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 73]], Vassiliev[3][Knot[10, 73]]} |
Out[19]= | {1, -2} |
In[20]:= | Kh[Knot[10, 73]][q, t] |
Out[20]= | 5 7 1 2 1 4 2 6 4 7 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 9 3 q q t q t q t q t q t q t q t q t 6 7 7 6 7 3 t 2 3 2 5 3 > ----- + ----- + ----- + ---- + ---- + --- + 4 q t + q t + 3 q t + q t 7 3 7 2 5 2 5 3 q q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 73], 2][q] |
Out[21]= | -23 3 -21 9 17 2 36 50 6 90 90 32 -57 + q - --- + q + --- - --- + --- + --- - --- - --- + --- - --- - --- + 22 20 19 18 17 16 15 14 13 12 q q q q q q q q q q 151 111 66 182 100 86 166 64 83 113 24 2 > --- - --- - -- + --- - --- - -- + --- - -- - -- + --- - -- + 52 q - q - 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q 3 4 5 6 7 > 24 q + 13 q + 2 q - 4 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1073 |
|