© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1063Visit 1063's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1063's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X5,16,6,17 X17,20,18,1 X11,18,12,19 X19,12,20,13 X7,14,8,15 X13,8,14,9 X15,6,16,7 X9,2,10,3 |
Gauss Code: | {-1, 10, -2, 1, -3, 9, -7, 8, -10, 2, -5, 6, -8, 7, -9, 3, -4, 5, -6, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 10 16 14 2 18 8 6 20 12 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 5t-2 - 14t-1 + 19 - 14t + 5t2 |
Conway Polynomial: | 1 + 6z2 + 5z4 |
Other knots with the same Alexander/Conway Polynomial: | {938, ...} |
Determinant and Signature: | {57, -4} |
Jones Polynomial: | q-12 - 3q-11 + 4q-10 - 7q-9 + 9q-8 - 9q-7 + 9q-6 - 7q-5 + 5q-4 - 2q-3 + q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-38 + q-36 - 2q-34 - q-32 - 2q-30 - 3q-28 + 2q-26 + q-24 + 2q-22 + q-20 - q-18 + 2q-16 - q-14 + q-12 + 2q-10 - q-8 + q-6 |
HOMFLY-PT Polynomial: | a4 + 2a4z2 + a4z4 + 3a6z2 + 2a6z4 + 3a8 + 4a8z2 + 2a8z4 - 4a10 - 3a10z2 + a12 |
Kauffman Polynomial: | a4 - 2a4z2 + a4z4 - 2a5z3 + 2a5z5 + a6z2 - 3a6z4 + 3a6z6 - 2a7z5 + 3a7z7 + 3a8 - 10a8z2 + 11a8z4 - 6a8z6 + 3a8z8 - 8a9z + 20a9z3 - 16a9z5 + 4a9z7 + a9z9 + 4a10 - 16a10z2 + 24a10z4 - 19a10z6 + 6a10z8 - 10a11z + 28a11z3 - 23a11z5 + 4a11z7 + a11z9 + a12 - 2a12z2 + 6a12z4 - 9a12z6 + 3a12z8 - 2a13z + 10a13z3 - 11a13z5 + 3a13z7 + a14z2 - 3a14z4 + a14z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {6, -14} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 1063. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-34 - 3q-33 + 9q-31 - 11q-30 - 5q-29 + 26q-28 - 17q-27 - 22q-26 + 45q-25 - 15q-24 - 44q-23 + 59q-22 - 5q-21 - 61q-20 + 61q-19 + 7q-18 - 64q-17 + 49q-16 + 12q-15 - 49q-14 + 30q-13 + 10q-12 - 26q-11 + 14q-10 + 4q-9 - 9q-8 + 5q-7 + q-6 - 2q-5 + q-4 |
3 | q-66 - 3q-65 + 5q-63 + 4q-62 - 11q-61 - 11q-60 + 19q-59 + 22q-58 - 23q-57 - 43q-56 + 24q-55 + 64q-54 - 10q-53 - 94q-52 - 5q-51 + 106q-50 + 45q-49 - 122q-48 - 73q-47 + 111q-46 + 116q-45 - 101q-44 - 146q-43 + 76q-42 + 173q-41 - 47q-40 - 196q-39 + 20q-38 + 207q-37 + 12q-36 - 215q-35 - 34q-34 + 203q-33 + 62q-32 - 191q-31 - 71q-30 + 155q-29 + 82q-28 - 125q-27 - 71q-26 + 81q-25 + 64q-24 - 56q-23 - 38q-22 + 25q-21 + 28q-20 - 21q-19 - 4q-18 + 6q-17 + 4q-16 - 10q-15 + 4q-14 + 5q-13 - 6q-11 + 3q-10 + q-9 + q-8 - 2q-7 + q-6 |
4 | q-108 - 3q-107 + 5q-105 + 4q-103 - 18q-102 - 4q-101 + 20q-100 + 8q-99 + 25q-98 - 57q-97 - 37q-96 + 36q-95 + 37q-94 + 100q-93 - 98q-92 - 119q-91 - 2q-90 + 48q-89 + 258q-88 - 61q-87 - 194q-86 - 131q-85 - 61q-84 + 411q-83 + 89q-82 - 118q-81 - 243q-80 - 325q-79 + 393q-78 + 224q-77 + 148q-76 - 161q-75 - 603q-74 + 162q-73 + 175q-72 + 460q-71 + 135q-70 - 731q-69 - 145q-68 - 61q-67 + 667q-66 + 505q-65 - 695q-64 - 401q-63 - 353q-62 + 759q-61 + 813q-60 - 579q-59 - 572q-58 - 604q-57 + 761q-56 + 1025q-55 - 407q-54 - 656q-53 - 805q-52 + 649q-51 + 1114q-50 - 167q-49 - 586q-48 - 918q-47 + 383q-46 + 1005q-45 + 93q-44 - 330q-43 - 854q-42 + 58q-41 + 683q-40 + 225q-39 - 13q-38 - 590q-37 - 140q-36 + 302q-35 + 169q-34 + 164q-33 - 272q-32 - 140q-31 + 58q-30 + 41q-29 + 156q-28 - 74q-27 - 58q-26 - 10q-25 - 24q-24 + 76q-23 - 11q-22 - 5q-21 - 5q-20 - 26q-19 + 24q-18 - 2q-17 + 4q-16 + q-15 - 10q-14 + 6q-13 - q-12 + q-11 + q-10 - 2q-9 + q-8 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 63]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 16, 6, 17], X[17, 20, 18, 1], > X[11, 18, 12, 19], X[19, 12, 20, 13], X[7, 14, 8, 15], X[13, 8, 14, 9], > X[15, 6, 16, 7], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[10, 63]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 9, -7, 8, -10, 2, -5, 6, -8, 7, -9, 3, -4, 5, -6, > 4] |
In[4]:= | DTCode[Knot[10, 63]] |
Out[4]= | DTCode[4, 10, 16, 14, 2, 18, 8, 6, 20, 12] |
In[5]:= | br = BR[Knot[10, 63]] |
Out[5]= | BR[5, {-1, -1, 2, -1, -3, -2, -2, -2, -3, -4, 3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 63]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 63]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 63]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 3, NotAvailable, 2} |
In[10]:= | alex = Alexander[Knot[10, 63]][t] |
Out[10]= | 5 14 2 19 + -- - -- - 14 t + 5 t 2 t t |
In[11]:= | Conway[Knot[10, 63]][z] |
Out[11]= | 2 4 1 + 6 z + 5 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 38], Knot[10, 63]} |
In[13]:= | {KnotDet[Knot[10, 63]], KnotSignature[Knot[10, 63]]} |
Out[13]= | {57, -4} |
In[14]:= | Jones[Knot[10, 63]][q] |
Out[14]= | -12 3 4 7 9 9 9 7 5 2 -2 q - --- + --- - -- + -- - -- + -- - -- + -- - -- + q 11 10 9 8 7 6 5 4 3 q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 63]} |
In[16]:= | A2Invariant[Knot[10, 63]][q] |
Out[16]= | -38 -36 2 -32 2 3 2 -24 2 -20 -18 2 q + q - --- - q - --- - --- + --- + q + --- + q - q + --- - 34 30 28 26 22 16 q q q q q q -14 -12 2 -8 -6 > q + q + --- - q + q 10 q |
In[17]:= | HOMFLYPT[Knot[10, 63]][a, z] |
Out[17]= | 4 8 10 12 4 2 6 2 8 2 10 2 4 4 a + 3 a - 4 a + a + 2 a z + 3 a z + 4 a z - 3 a z + a z + 6 4 8 4 > 2 a z + 2 a z |
In[18]:= | Kauffman[Knot[10, 63]][a, z] |
Out[18]= | 4 8 10 12 9 11 13 4 2 6 2 a + 3 a + 4 a + a - 8 a z - 10 a z - 2 a z - 2 a z + a z - 8 2 10 2 12 2 14 2 5 3 9 3 11 3 > 10 a z - 16 a z - 2 a z + a z - 2 a z + 20 a z + 28 a z + 13 3 4 4 6 4 8 4 10 4 12 4 14 4 > 10 a z + a z - 3 a z + 11 a z + 24 a z + 6 a z - 3 a z + 5 5 7 5 9 5 11 5 13 5 6 6 8 6 > 2 a z - 2 a z - 16 a z - 23 a z - 11 a z + 3 a z - 6 a z - 10 6 12 6 14 6 7 7 9 7 11 7 13 7 > 19 a z - 9 a z + a z + 3 a z + 4 a z + 4 a z + 3 a z + 8 8 10 8 12 8 9 9 11 9 > 3 a z + 6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 63]], Vassiliev[3][Knot[10, 63]]} |
Out[19]= | {6, -14} |
In[20]:= | Kh[Knot[10, 63]][q, t] |
Out[20]= | -5 -3 1 2 1 2 2 5 2 q + q + ------- + ------ + ------ + ------ + ------ + ------ + ------ + 25 10 23 9 21 9 21 8 19 8 19 7 17 7 q t q t q t q t q t q t q t 4 5 5 4 4 5 3 4 > ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 17 6 15 6 15 5 13 5 13 4 11 4 11 3 9 3 q t q t q t q t q t q t q t q t 2 3 2 > ----- + ----- + ---- 9 2 7 2 5 q t q t q t |
In[21]:= | ColouredJones[Knot[10, 63], 2][q] |
Out[21]= | -34 3 9 11 5 26 17 22 45 15 44 59 5 q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - 33 31 30 29 28 27 26 25 24 23 22 21 q q q q q q q q q q q q 61 61 7 64 49 12 49 30 10 26 14 4 9 > --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + -- - -- + 20 19 18 17 16 15 14 13 12 11 10 9 8 q q q q q q q q q q q q q 5 -6 2 -4 > -- + q - -- + q 7 5 q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1063 |
|