© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1058Visit 1058's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1058's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X7,10,8,11 X3948 X9,3,10,2 X5,14,6,15 X11,19,12,18 X15,20,16,1 X19,16,20,17 X17,13,18,12 X13,6,14,7 |
Gauss Code: | {-1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 9, -10, 5, -7, 8, -9, 6, -8, 7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 14 10 2 18 6 20 12 16 |
Minimum Braid Representative:
Length is 11, width is 6 Braid index is 6 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 3t-2 - 16t-1 + 27 - 16t + 3t2 |
Conway Polynomial: | 1 - 4z2 + 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {65, 0} |
Jones Polynomial: | q-6 - 3q-5 + 6q-4 - 8q-3 + 10q-2 - 11q-1 + 10 - 8q + 5q2 - 2q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-20 + q-18 - 2q-16 + q-14 - 2q-10 + 3q-8 + q-4 - 2 + q2 - 3q4 + q6 + 2q8 - q10 + q12 + q14 |
HOMFLY-PT Polynomial: | a-4 - 2a-2z2 - 2 - 2z2 + z4 + 3a2 + 3a2z2 + 2a2z4 - 2a4 - 3a4z2 + a6 |
Kauffman Polynomial: | a-4 - 2a-4z2 + a-4z4 - 2a-3z3 + 2a-3z5 - 2a-2z4 + 3a-2z6 - 4a-1z + 8a-1z3 - 6a-1z5 + 4a-1z7 - 2 + 8z2 - 5z4 - z6 + 3z8 - 6az + 21az3 - 22az5 + 7az7 + az9 - 3a2 + 10a2z2 - 4a2z4 - 10a2z6 + 6a2z8 - 4a3z + 18a3z3 - 23a3z5 + 6a3z7 + a3z9 - 2a4 + 7a4z2 - 5a4z4 - 5a4z6 + 3a4z8 - 2a5z + 7a5z3 - 9a5z5 + 3a5z7 - a6 + 3a6z2 - 3a6z4 + a6z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-4, 1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1058. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-18 - 3q-17 + 11q-15 - 13q-14 - 10q-13 + 36q-12 - 20q-11 - 36q-10 + 63q-9 - 12q-8 - 68q-7 + 78q-6 + 6q-5 - 91q-4 + 76q-3 + 23q-2 - 91q-1 + 57 + 29q - 66q2 + 30q3 + 20q4 - 32q5 + 12q6 + 7q7 - 10q8 + 4q9 + q10 - 2q11 + q12 |
3 | q-36 - 3q-35 + 5q-33 + 6q-32 - 13q-31 - 17q-30 + 20q-29 + 38q-28 - 20q-27 - 69q-26 + 5q-25 + 109q-24 + 22q-23 - 136q-22 - 77q-21 + 157q-20 + 138q-19 - 151q-18 - 210q-17 + 130q-16 + 269q-15 - 81q-14 - 328q-13 + 31q-12 + 366q-11 + 31q-10 - 392q-9 - 92q-8 + 403q-7 + 146q-6 - 393q-5 - 198q-4 + 370q-3 + 229q-2 - 320q-1 - 247 + 259q + 242q2 - 190q3 - 215q4 + 125q5 + 171q6 - 72q7 - 120q8 + 33q9 + 80q10 - 21q11 - 37q12 + 5q13 + 22q14 - 8q15 - 5q16 + 2q17 + 4q18 - 5q19 + 2q20 + q22 - 2q23 + q24 |
4 | q-60 - 3q-59 + 5q-57 + 6q-55 - 20q-54 - 10q-53 + 20q-52 + 15q-51 + 47q-50 - 62q-49 - 71q-48 + 5q-47 + 41q-46 + 198q-45 - 53q-44 - 175q-43 - 143q-42 - 56q-41 + 446q-40 + 148q-39 - 135q-38 - 383q-37 - 456q-36 + 529q-35 + 482q-34 + 277q-33 - 412q-32 - 1071q-31 + 188q-30 + 608q-29 + 963q-28 + 26q-27 - 1520q-26 - 490q-25 + 276q-24 + 1571q-23 + 812q-22 - 1561q-21 - 1172q-20 - 392q-19 + 1873q-18 + 1629q-17 - 1274q-16 - 1659q-15 - 1119q-14 + 1905q-13 + 2279q-12 - 840q-11 - 1928q-10 - 1742q-9 + 1722q-8 + 2691q-7 - 311q-6 - 1939q-5 - 2192q-4 + 1280q-3 + 2743q-2 + 273q-1 - 1568 - 2318q + 600q2 + 2296q3 + 712q4 - 867q5 - 1959q6 - 29q7 + 1456q8 + 755q9 - 182q10 - 1234q11 - 300q12 + 639q13 + 464q14 + 148q15 - 550q16 - 229q17 + 179q18 + 152q19 + 155q20 - 173q21 - 85q22 + 36q23 + 10q24 + 73q25 - 45q26 - 15q27 + 11q28 - 15q29 + 25q30 - 11q31 - q32 + 4q33 - 8q34 + 7q35 - 2q36 + q38 - 2q39 + q40 |
5 | q-90 - 3q-89 + 5q-87 - q-84 - 13q-83 - 10q-82 + 20q-81 + 24q-80 + 15q-79 - 4q-78 - 55q-77 - 71q-76 - 6q-75 + 95q-74 + 132q-73 + 80q-72 - 84q-71 - 253q-70 - 233q-69 + 19q-68 + 340q-67 + 458q-66 + 209q-65 - 322q-64 - 727q-63 - 609q-62 + 86q-61 + 915q-60 + 1126q-59 + 446q-58 - 786q-57 - 1672q-56 - 1310q-55 + 287q-54 + 1953q-53 + 2302q-52 + 801q-51 - 1753q-50 - 3300q-49 - 2264q-48 + 893q-47 + 3853q-46 + 4017q-45 + 685q-44 - 3832q-43 - 5663q-42 - 2803q-41 + 2970q-40 + 6977q-39 + 5246q-38 - 1427q-37 - 7632q-36 - 7696q-35 - 758q-34 + 7679q-33 + 9899q-32 + 3187q-31 - 7050q-30 - 11665q-29 - 5764q-28 + 6033q-27 + 12989q-26 + 8135q-25 - 4733q-24 - 13866q-23 - 10288q-22 + 3341q-21 + 14447q-20 + 12146q-19 - 1986q-18 - 14762q-17 - 13722q-16 + 628q-15 + 14863q-14 + 15120q-13 + 700q-12 - 14734q-11 - 16230q-10 - 2146q-9 + 14227q-8 + 17126q-7 + 3673q-6 - 13272q-5 - 17577q-4 - 5299q-3 + 11752q-2 + 17481q-1 + 6860 - 9688q - 16662q2 - 8168q3 + 7226q4 + 15092q5 + 8938q6 - 4599q7 - 12831q8 - 9044q9 + 2142q10 + 10157q11 + 8431q12 - 202q13 - 7358q14 - 7200q15 - 1109q16 + 4795q17 + 5681q18 + 1707q19 - 2804q20 - 4006q21 - 1766q22 + 1327q23 + 2637q24 + 1488q25 - 542q26 - 1507q27 - 1048q28 + 63q29 + 826q30 + 668q31 + 36q32 - 366q33 - 365q34 - 96q35 + 181q36 + 184q37 + 34q38 - 45q39 - 82q40 - 47q41 + 41q42 + 36q43 - 4q44 + 3q45 - 9q46 - 21q47 + 14q48 + 10q49 - 8q50 + 3q51 + q52 - 8q53 + 4q54 + 3q55 - 2q56 + q58 - 2q59 + q60 |
6 | q-126 - 3q-125 + 5q-123 - 7q-120 + 6q-119 - 13q-118 - 10q-117 + 29q-116 + 15q-115 + 15q-114 - 27q-113 + 3q-112 - 66q-111 - 71q-110 + 59q-109 + 86q-108 + 132q-107 + 12q-106 + 62q-105 - 228q-104 - 346q-103 - 106q-102 + 81q-101 + 416q-100 + 350q-99 + 595q-98 - 167q-97 - 809q-96 - 878q-95 - 683q-94 + 179q-93 + 732q-92 + 2087q-91 + 1214q-90 - 153q-89 - 1575q-88 - 2599q-87 - 2170q-86 - 1002q-85 + 3001q-84 + 4012q-83 + 3675q-82 + 1026q-81 - 2838q-80 - 5993q-79 - 7148q-78 - 1233q-77 + 3734q-76 + 8804q-75 + 9148q-74 + 4437q-73 - 4760q-72 - 14007q-71 - 12371q-70 - 6498q-69 + 6488q-68 + 16939q-67 + 19913q-66 + 9074q-65 - 10742q-64 - 22234q-63 - 25847q-62 - 10965q-61 + 12006q-60 + 33080q-59 + 32877q-58 + 9876q-57 - 17472q-56 - 41933q-55 - 39075q-54 - 11733q-53 + 30341q-52 + 52988q-51 + 41592q-50 + 6538q-49 - 41731q-48 - 63587q-47 - 46453q-46 + 8709q-45 + 57488q-44 + 70135q-43 + 40923q-42 - 23928q-41 - 73965q-40 - 78314q-39 - 22402q-38 + 46392q-37 + 86347q-36 + 72749q-35 + 2037q-34 - 71019q-33 - 99432q-32 - 51354q-31 + 28507q-30 + 91347q-29 + 95418q-28 + 26139q-27 - 62305q-26 - 110909q-25 - 72997q-24 + 11750q-23 + 91149q-22 + 110170q-21 + 44956q-20 - 53331q-19 - 117304q-18 - 89116q-17 - 2616q-16 + 88906q-15 + 120653q-14 + 61269q-13 - 43052q-12 - 119790q-11 - 102975q-10 - 18714q-9 + 81477q-8 + 126576q-7 + 78166q-6 - 26119q-5 - 113494q-4 - 112917q-3 - 39334q-2 + 62685q-1 + 121569 + 92403q - 565q2 - 91890q3 - 110932q4 - 59204q5 + 31972q6 + 98984q7 + 94225q8 + 25849q9 - 56332q10 - 90348q11 - 66747q12 - 176q13 + 62162q14 + 77149q15 + 39828q16 - 19856q17 - 56250q18 - 55795q19 - 19296q20 + 25842q21 + 47742q22 + 35737q23 + 2797q24 - 23968q25 - 33790q26 - 20763q27 + 3711q28 + 20913q29 + 21464q30 + 8535q31 - 5126q32 - 14275q33 - 12736q34 - 3087q35 + 5840q36 + 8774q37 + 5519q38 + 896q39 - 3931q40 - 5191q41 - 2440q42 + 770q43 + 2404q44 + 1977q45 + 1143q46 - 590q47 - 1518q48 - 866q49 - 56q50 + 433q51 + 386q52 + 473q53 + 11q54 - 376q55 - 166q56 - 24q57 + 56q58 + q59 + 134q60 + 35q61 - 104q62 - 7q63 + 8q64 + 14q65 - 31q66 + 33q67 + 14q68 - 35q69 + 8q70 + 4q71 + 9q72 - 13q73 + 6q74 + 5q75 - 11q76 + 4q77 + 3q79 - 2q80 + q82 - 2q83 + q84 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 58]] |
Out[2]= | PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], > X[5, 14, 6, 15], X[11, 19, 12, 18], X[15, 20, 16, 1], X[19, 16, 20, 17], > X[17, 13, 18, 12], X[13, 6, 14, 7]] |
In[3]:= | GaussCode[Knot[10, 58]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 9, -10, 5, -7, 8, -9, 6, -8, > 7] |
In[4]:= | DTCode[Knot[10, 58]] |
Out[4]= | DTCode[4, 8, 14, 10, 2, 18, 6, 20, 12, 16] |
In[5]:= | br = BR[Knot[10, 58]] |
Out[5]= | BR[6, {1, -2, 1, 3, -2, -4, -3, -3, 5, -4, 5}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {6, 11} |
In[7]:= | BraidIndex[Knot[10, 58]] |
Out[7]= | 6 |
In[8]:= | Show[DrawMorseLink[Knot[10, 58]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 58]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 58]][t] |
Out[10]= | 3 16 2 27 + -- - -- - 16 t + 3 t 2 t t |
In[11]:= | Conway[Knot[10, 58]][z] |
Out[11]= | 2 4 1 - 4 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 58]} |
In[13]:= | {KnotDet[Knot[10, 58]], KnotSignature[Knot[10, 58]]} |
Out[13]= | {65, 0} |
In[14]:= | Jones[Knot[10, 58]][q] |
Out[14]= | -6 3 6 8 10 11 2 3 4 10 + q - -- + -- - -- + -- - -- - 8 q + 5 q - 2 q + q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 58]} |
In[16]:= | A2Invariant[Knot[10, 58]][q] |
Out[16]= | -20 -18 2 -14 2 3 -4 2 4 6 8 10 -2 + q + q - --- + q - --- + -- + q + q - 3 q + q + 2 q - q + 16 10 8 q q q 12 14 > q + q |
In[17]:= | HOMFLYPT[Knot[10, 58]][a, z] |
Out[17]= | 2 -4 2 4 6 2 2 z 2 2 4 2 4 2 4 -2 + a + 3 a - 2 a + a - 2 z - ---- + 3 a z - 3 a z + z + 2 a z 2 a |
In[18]:= | Kauffman[Knot[10, 58]][a, z] |
Out[18]= | 2 -4 2 4 6 4 z 3 5 2 2 z -2 + a - 3 a - 2 a - a - --- - 6 a z - 4 a z - 2 a z + 8 z - ---- + a 4 a 3 3 2 2 4 2 6 2 2 z 8 z 3 3 3 5 3 > 10 a z + 7 a z + 3 a z - ---- + ---- + 21 a z + 18 a z + 7 a z - 3 a a 4 4 5 5 4 z 2 z 2 4 4 4 6 4 2 z 6 z 5 > 5 z + -- - ---- - 4 a z - 5 a z - 3 a z + ---- - ---- - 22 a z - 4 2 3 a a a a 6 7 3 5 5 5 6 3 z 2 6 4 6 6 6 4 z > 23 a z - 9 a z - z + ---- - 10 a z - 5 a z + a z + ---- + 2 a a 7 3 7 5 7 8 2 8 4 8 9 3 9 > 7 a z + 6 a z + 3 a z + 3 z + 6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 58]], Vassiliev[3][Knot[10, 58]]} |
Out[19]= | {-4, 1} |
In[20]:= | Kh[Knot[10, 58]][q, t] |
Out[20]= | 5 1 2 1 4 2 4 4 6 - + 6 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 5 2 q t q t q t q t q t q t q t q t 4 5 6 3 3 2 5 2 5 3 7 3 > ----- + ---- + --- + 4 q t + 4 q t + q t + 4 q t + q t + q t + 3 2 3 q t q t q t 9 4 > q t |
In[21]:= | ColouredJones[Knot[10, 58], 2][q] |
Out[21]= | -18 3 11 13 10 36 20 36 63 12 68 78 6 57 + q - --- + --- - --- - --- + --- - --- - --- + -- - -- - -- + -- + -- - 17 15 14 13 12 11 10 9 8 7 6 5 q q q q q q q q q q q q 91 76 23 91 2 3 4 5 6 7 > -- + -- + -- - -- + 29 q - 66 q + 30 q + 20 q - 32 q + 12 q + 7 q - 4 3 2 q q q q 8 9 10 11 12 > 10 q + 4 q + q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1058 |
|