© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1057Visit 1057's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1057's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,19,12,18 X15,1,16,20 X19,17,20,16 X17,11,18,10 X7283 |
Gauss Code: | {-1, 10, -2, 1, -4, 5, -10, 2, -3, 9, -6, 4, -5, 3, -7, 8, -9, 6, -8, 7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 12 2 14 18 6 20 10 16 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 8t-2 + 18t-1 - 23 + 18t - 8t2 + 2t3 |
Conway Polynomial: | 1 + 4z2 + 4z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n40, K11n46, ...} |
Determinant and Signature: | {79, 2} |
Jones Polynomial: | - q-2 + 3q-1 - 6 + 10q - 12q2 + 14q3 - 12q4 + 10q5 - 7q6 + 3q7 - q8 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-6 + q-4 - q-2 - 1 + 3q2 - 2q4 + 3q6 + q8 + q10 + 3q12 - 2q14 + 2q16 - 2q18 - 2q20 + q22 - q24 |
HOMFLY-PT Polynomial: | - 2a-6 - 2a-6z2 - a-6z4 + 2a-4 + 4a-4z2 + 3a-4z4 + a-4z6 + 2a-2 + 4a-2z2 + 3a-2z4 + a-2z6 - 1 - 2z2 - z4 |
Kauffman Polynomial: | a-9z - 2a-9z3 + a-9z5 + 2a-8z2 - 5a-8z4 + 3a-8z6 - 3a-7z + 6a-7z3 - 9a-7z5 + 5a-7z7 + 2a-6 - 2a-6z2 - a-6z4 - 3a-6z6 + 4a-6z8 - 6a-5z + 18a-5z3 - 23a-5z5 + 10a-5z7 + a-5z9 + 2a-4 - a-4z4 - 7a-4z6 + 7a-4z8 - 2a-3z + 12a-3z3 - 19a-3z5 + 9a-3z7 + a-3z9 - 2a-2 + 8a-2z2 - 11a-2z4 + 2a-2z6 + 3a-2z8 + a-1z - 5a-1z5 + 4a-1z7 - 1 + 4z2 - 6z4 + 3z6 + az - 2az3 + az5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {4, 6} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1057. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-7 - 3q-6 + q-5 + 9q-4 - 17q-3 + q-2 + 36q-1 - 47 - 9q + 88q2 - 81q3 - 37q4 + 143q5 - 95q6 - 70q7 + 168q8 - 82q9 - 87q10 + 148q11 - 49q12 - 80q13 + 97q14 - 15q15 - 52q16 + 42q17 + 2q18 - 20q19 + 9q20 + 2q21 - 3q22 + q23 |
3 | - q-15 + 3q-14 - q-13 - 4q-12 - 2q-11 + 14q-10 + 2q-9 - 28q-8 - 8q-7 + 54q-6 + 21q-5 - 93q-4 - 51q-3 + 148q-2 + 104q-1 - 212 - 187q + 270q2 + 312q3 - 327q4 - 445q5 + 339q6 + 611q7 - 340q8 - 746q9 + 290q10 + 880q11 - 242q12 - 946q13 + 146q14 + 1003q15 - 77q16 - 980q17 - 26q18 + 941q19 + 99q20 - 841q21 - 181q22 + 722q23 + 235q24 - 578q25 - 262q26 + 423q27 + 264q28 - 284q29 - 229q30 + 159q31 + 187q32 - 83q33 - 121q34 + 24q35 + 76q36 - 4q37 - 37q38 - 3q39 + 16q40 + q41 - 4q42 - 2q43 + 3q44 - q45 |
4 | q-26 - 3q-25 + q-24 + 4q-23 - 3q-22 + 5q-21 - 17q-20 + 6q-19 + 24q-18 - 13q-17 + 12q-16 - 70q-15 + 18q-14 + 102q-13 - 14q-12 + 10q-11 - 243q-10 + 9q-9 + 316q-8 + 102q-7 + 35q-6 - 697q-5 - 196q-4 + 686q-3 + 575q-2 + 320q-1 - 1509 - 934q + 941q2 + 1535q3 + 1288q4 - 2372q5 - 2366q6 + 573q7 + 2656q8 + 3081q9 - 2700q10 - 4081q11 - 620q12 + 3327q13 + 5199q14 - 2232q15 - 5366q16 - 2210q17 + 3243q18 + 6865q19 - 1235q20 - 5814q21 - 3597q22 + 2556q23 + 7652q24 - 101q25 - 5445q26 - 4466q27 + 1508q28 + 7489q29 + 981q30 - 4371q31 - 4745q32 + 235q33 + 6434q34 + 1857q35 - 2753q36 - 4334q37 - 998q38 + 4630q39 + 2220q40 - 992q41 - 3213q42 - 1717q43 + 2550q44 + 1854q45 + 273q46 - 1741q47 - 1618q48 + 906q49 + 1024q50 + 672q51 - 571q52 - 972q53 + 117q54 + 306q55 + 457q56 - 42q57 - 367q58 - 41q59 + 7q60 + 165q61 + 40q62 - 86q63 - 9q64 - 24q65 + 32q66 + 14q67 - 15q68 + 3q69 - 6q70 + 4q71 + 2q72 - 3q73 + q74 |
5 | - q-40 + 3q-39 - q-38 - 4q-37 + 3q-36 - 2q-34 + 9q-33 - 2q-32 - 19q-31 + 6q-30 + 14q-29 + 5q-28 + 15q-27 - 21q-26 - 62q-25 - 7q-24 + 76q-23 + 96q-22 + 39q-21 - 119q-20 - 256q-19 - 120q-18 + 234q-17 + 498q-16 + 326q-15 - 315q-14 - 933q-13 - 786q-12 + 312q-11 + 1565q-10 + 1651q-9 - 38q-8 - 2356q-7 - 3052q-6 - 790q-5 + 3120q-4 + 5105q-3 + 2461q-2 - 3548q-1 - 7728 - 5233q + 3223q2 + 10599q3 + 9231q4 - 1630q5 - 13391q6 - 14308q7 - 1317q8 + 15330q9 + 20010q10 + 5995q11 - 16211q12 - 25873q13 - 11689q14 + 15490q15 + 31021q16 + 18417q17 - 13438q18 - 35247q19 - 24954q20 + 10054q21 + 37958q22 + 31277q23 - 6048q24 - 39401q25 - 36357q26 + 1558q27 + 39418q28 + 40641q29 + 2651q30 - 38528q31 - 43341q32 - 6845q33 + 36615q34 + 45346q35 + 10486q36 - 34176q37 - 45895q38 - 14055q39 + 30809q40 + 45882q41 + 17195q42 - 26909q43 - 44518q44 - 20190q45 + 22081q46 + 42328q47 + 22677q48 - 16734q49 - 38763q50 - 24534q51 + 10867q52 + 34133q53 + 25357q54 - 5039q55 - 28407q56 - 24937q57 - 280q58 + 22010q59 + 23142q60 + 4559q61 - 15524q62 - 20027q63 - 7391q64 + 9450q65 + 16102q66 + 8635q67 - 4551q68 - 11715q69 - 8382q70 + 868q71 + 7721q72 + 7133q73 + 1138q74 - 4325q75 - 5264q76 - 2082q77 + 1967q78 + 3504q79 + 1978q80 - 529q81 - 1956q82 - 1563q83 - 130q84 + 953q85 + 985q86 + 315q87 - 355q88 - 550q89 - 253q90 + 88q91 + 233q92 + 177q93 + q94 - 107q95 - 72q96 - 5q97 + 12q98 + 39q99 + 18q100 - 20q101 - 9q102 + 4q103 - 4q104 + 2q105 + 6q106 - 4q107 - 2q108 + 3q109 - q110 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 57]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 15, 10, 14], X[5, 13, 6, 12], > X[13, 7, 14, 6], X[11, 19, 12, 18], X[15, 1, 16, 20], X[19, 17, 20, 16], > X[17, 11, 18, 10], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 57]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -3, 9, -6, 4, -5, 3, -7, 8, -9, 6, -8, > 7] |
In[4]:= | DTCode[Knot[10, 57]] |
Out[4]= | DTCode[4, 8, 12, 2, 14, 18, 6, 20, 10, 16] |
In[5]:= | br = BR[Knot[10, 57]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, 2, -3, 2, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 57]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 57]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 57]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 57]][t] |
Out[10]= | 2 8 18 2 3 -23 + -- - -- + -- + 18 t - 8 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 57]][z] |
Out[11]= | 2 4 6 1 + 4 z + 4 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 57], Knot[11, NonAlternating, 40], Knot[11, NonAlternating, 46]} |
In[13]:= | {KnotDet[Knot[10, 57]], KnotSignature[Knot[10, 57]]} |
Out[13]= | {79, 2} |
In[14]:= | Jones[Knot[10, 57]][q] |
Out[14]= | -2 3 2 3 4 5 6 7 8 -6 - q + - + 10 q - 12 q + 14 q - 12 q + 10 q - 7 q + 3 q - q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 57]} |
In[16]:= | A2Invariant[Knot[10, 57]][q] |
Out[16]= | -6 -4 -2 2 4 6 8 10 12 14 16 -1 - q + q - q + 3 q - 2 q + 3 q + q + q + 3 q - 2 q + 2 q - 18 20 22 24 > 2 q - 2 q + q - q |
In[17]:= | HOMFLYPT[Knot[10, 57]][a, z] |
Out[17]= | 2 2 2 4 4 4 6 6 2 2 2 2 2 z 4 z 4 z 4 z 3 z 3 z z z -1 - -- + -- + -- - 2 z - ---- + ---- + ---- - z - -- + ---- + ---- + -- + -- 6 4 2 6 4 2 6 4 2 4 2 a a a a a a a a a a a |
In[18]:= | Kauffman[Knot[10, 57]][a, z] |
Out[18]= | 2 2 2 2 2 z 3 z 6 z 2 z z 2 2 z 2 z -1 + -- + -- - -- + -- - --- - --- - --- + - + a z + 4 z + ---- - ---- + 6 4 2 9 7 5 3 a 8 6 a a a a a a a a a 2 3 3 3 3 4 4 4 8 z 2 z 6 z 18 z 12 z 3 4 5 z z z > ---- - ---- + ---- + ----- + ----- - 2 a z - 6 z - ---- - -- - -- - 2 9 7 5 3 8 6 4 a a a a a a a a 4 5 5 5 5 5 6 6 11 z z 9 z 23 z 19 z 5 z 5 6 3 z 3 z > ----- + -- - ---- - ----- - ----- - ---- + a z + 3 z + ---- - ---- - 2 9 7 5 3 a 8 6 a a a a a a a 6 6 7 7 7 7 8 8 8 9 9 7 z 2 z 5 z 10 z 9 z 4 z 4 z 7 z 3 z z z > ---- + ---- + ---- + ----- + ---- + ---- + ---- + ---- + ---- + -- + -- 4 2 7 5 3 a 6 4 2 5 3 a a a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 57]], Vassiliev[3][Knot[10, 57]]} |
Out[19]= | {4, 6} |
In[20]:= | Kh[Knot[10, 57]][q, t] |
Out[20]= | 3 1 2 1 4 2 q 3 5 5 2 6 q + 5 q + ----- + ----- + ---- + --- + --- + 7 q t + 5 q t + 7 q t + 5 3 3 2 2 q t t q t q t q t 7 2 7 3 9 3 9 4 11 4 11 5 13 5 > 7 q t + 5 q t + 7 q t + 5 q t + 5 q t + 2 q t + 5 q t + 13 6 15 6 17 7 > q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 57], 2][q] |
Out[21]= | -7 3 -5 9 17 -2 36 2 3 4 -47 + q - -- + q + -- - -- + q + -- - 9 q + 88 q - 81 q - 37 q + 6 4 3 q q q q 5 6 7 8 9 10 11 12 > 143 q - 95 q - 70 q + 168 q - 82 q - 87 q + 148 q - 49 q - 13 14 15 16 17 18 19 20 > 80 q + 97 q - 15 q - 52 q + 42 q + 2 q - 20 q + 9 q + 21 22 23 > 2 q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1057 |
|