© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1056Visit 1056's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1056's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X10,4,11,3 X12,6,13,5 X18,14,19,13 X16,7,17,8 X6,17,7,18 X20,16,1,15 X14,20,15,19 X8,12,9,11 X2,10,3,9 |
Gauss Code: | {1, -10, 2, -1, 3, -6, 5, -9, 10, -2, 9, -3, 4, -8, 7, -5, 6, -4, 8, -7} |
DT (Dowker-Thistlethwaite) Code: | 4 10 12 16 2 8 18 20 6 14 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 8t-2 - 14t-1 + 17 - 14t + 8t2 - 2t3 |
Conway Polynomial: | 1 - 4z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {1025, K11a140, ...} |
Determinant and Signature: | {65, 4} |
Jones Polynomial: | 1 - 2q + 5q2 - 7q3 + 10q4 - 11q5 + 10q6 - 9q7 + 6q8 - 3q9 + q10 |
Other knots (up to mirrors) with the same Jones Polynomial: | {1025, ...} |
A2 (sl(3)) Invariant: | 1 + q4 + 2q6 - q8 + 3q10 - q12 - 3q18 + q20 - 2q22 + q24 + q26 - q28 + q30 |
HOMFLY-PT Polynomial: | a-8 + 2a-8z2 + a-8z4 - 2a-6 - 3a-6z2 - 3a-6z4 - a-6z6 - 2a-4z2 - 3a-4z4 - a-4z6 + 2a-2 + 3a-2z2 + a-2z4 |
Kauffman Polynomial: | - a-12z2 + a-12z4 - 3a-11z3 + 3a-11z5 + 2a-10z2 - 6a-10z4 + 5a-10z6 - 4a-9z + 11a-9z3 - 11a-9z5 + 6a-9z7 + a-8 - 2a-8z2 + 4a-8z4 - 5a-8z6 + 4a-8z8 - 8a-7z + 21a-7z3 - 21a-7z5 + 7a-7z7 + a-7z9 + 2a-6 - 7a-6z2 + 12a-6z4 - 14a-6z6 + 6a-6z8 - 4a-5z + 11a-5z3 - 13a-5z5 + 3a-5z7 + a-5z9 + 3a-4z2 - 3a-4z4 - 3a-4z6 + 2a-4z8 + 4a-3z3 - 6a-3z5 + 2a-3z7 - 2a-2 + 5a-2z2 - 4a-2z4 + a-2z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 1056. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-2 - 2q-1 + 7q - 9q2 - 4q3 + 25q4 - 21q5 - 20q6 + 55q7 - 26q8 - 50q9 + 83q10 - 19q11 - 79q12 + 94q13 - 4q14 - 90q15 + 83q16 + 9q17 - 76q18 + 54q19 + 13q20 - 45q21 + 23q22 + 9q23 - 16q24 + 6q25 + 2q26 - 3q27 + q28 |
3 | q-6 - 2q-5 + 2q-3 + 4q-2 - 8q-1 - 5 + 11q + 17q2 - 23q3 - 28q4 + 25q5 + 62q6 - 35q7 - 91q8 + 16q9 + 146q10 + 3q11 - 183q12 - 59q13 + 230q14 + 113q15 - 244q16 - 195q17 + 260q18 + 258q19 - 242q20 - 331q21 + 222q22 + 385q23 - 190q24 - 422q25 + 148q26 + 445q27 - 108q28 - 438q29 + 57q30 + 419q31 - 20q32 - 365q33 - 23q34 + 305q35 + 44q36 - 227q37 - 59q38 + 159q39 + 55q40 - 99q41 - 42q42 + 53q43 + 29q44 - 28q45 - 15q46 + 14q47 + 6q48 - 7q49 - q50 + 2q51 + 2q52 - 3q53 + q54 |
4 | q-12 - 2q-11 + 2q-9 - q-8 + 5q-7 - 10q-6 - q-5 + 11q-4 - 2q-3 + 17q-2 - 37q-1 - 14 + 35q + 15q2 + 60q3 - 100q4 - 80q5 + 45q6 + 69q7 + 216q8 - 153q9 - 241q10 - 74q11 + 81q12 + 550q13 - 31q14 - 386q15 - 410q16 - 170q17 + 921q18 + 375q19 - 244q20 - 805q21 - 796q22 + 1019q23 + 892q24 + 312q25 - 956q26 - 1600q27 + 713q28 + 1224q29 + 1089q30 - 756q31 - 2275q32 + 163q33 + 1276q34 + 1807q35 - 358q36 - 2678q37 - 404q38 + 1132q39 + 2309q40 + 83q41 - 2784q42 - 888q43 + 841q44 + 2537q45 + 520q46 - 2554q47 - 1216q48 + 393q49 + 2385q50 + 897q51 - 1944q52 - 1264q53 - 132q54 + 1813q55 + 1046q56 - 1114q57 - 954q58 - 485q59 + 1018q60 + 852q61 - 416q62 - 461q63 - 494q64 + 377q65 + 462q66 - 83q67 - 90q68 - 287q69 + 78q70 + 160q71 - 17q72 + 33q73 - 104q74 + 12q75 + 36q76 - 19q77 + 28q78 - 26q79 + 4q80 + 8q81 - 10q82 + 8q83 - 5q84 + 2q85 + 2q86 - 3q87 + q88 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 56]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[12, 6, 13, 5], X[18, 14, 19, 13], > X[16, 7, 17, 8], X[6, 17, 7, 18], X[20, 16, 1, 15], X[14, 20, 15, 19], > X[8, 12, 9, 11], X[2, 10, 3, 9]] |
In[3]:= | GaussCode[Knot[10, 56]] |
Out[3]= | GaussCode[1, -10, 2, -1, 3, -6, 5, -9, 10, -2, 9, -3, 4, -8, 7, -5, 6, -4, 8, > -7] |
In[4]:= | DTCode[Knot[10, 56]] |
Out[4]= | DTCode[4, 10, 12, 16, 2, 8, 18, 20, 6, 14] |
In[5]:= | br = BR[Knot[10, 56]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, 2, -3, 2, 2, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 56]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 56]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 56]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 56]][t] |
Out[10]= | 2 8 14 2 3 17 - -- + -- - -- - 14 t + 8 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 56]][z] |
Out[11]= | 4 6 1 - 4 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 25], Knot[10, 56], Knot[11, Alternating, 140]} |
In[13]:= | {KnotDet[Knot[10, 56]], KnotSignature[Knot[10, 56]]} |
Out[13]= | {65, 4} |
In[14]:= | Jones[Knot[10, 56]][q] |
Out[14]= | 2 3 4 5 6 7 8 9 10 1 - 2 q + 5 q - 7 q + 10 q - 11 q + 10 q - 9 q + 6 q - 3 q + q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 25], Knot[10, 56]} |
In[16]:= | A2Invariant[Knot[10, 56]][q] |
Out[16]= | 4 6 8 10 12 18 20 22 24 26 28 30 1 + q + 2 q - q + 3 q - q - 3 q + q - 2 q + q + q - q + q |
In[17]:= | HOMFLYPT[Knot[10, 56]][a, z] |
Out[17]= | 2 2 2 2 4 4 4 4 6 6 -8 2 2 2 z 3 z 2 z 3 z z 3 z 3 z z z z a - -- + -- + ---- - ---- - ---- + ---- + -- - ---- - ---- + -- - -- - -- 6 2 8 6 4 2 8 6 4 2 6 4 a a a a a a a a a a a a |
In[18]:= | Kauffman[Knot[10, 56]][a, z] |
Out[18]= | 2 2 2 2 2 2 -8 2 2 4 z 8 z 4 z z 2 z 2 z 7 z 3 z 5 z a + -- - -- - --- - --- - --- - --- + ---- - ---- - ---- + ---- + ---- - 6 2 9 7 5 12 10 8 6 4 2 a a a a a a a a a a a 3 3 3 3 3 4 4 4 4 4 3 z 11 z 21 z 11 z 4 z z 6 z 4 z 12 z 3 z > ---- + ----- + ----- + ----- + ---- + --- - ---- + ---- + ----- - ---- - 11 9 7 5 3 12 10 8 6 4 a a a a a a a a a a 4 5 5 5 5 5 6 6 6 6 4 z 3 z 11 z 21 z 13 z 6 z 5 z 5 z 14 z 3 z > ---- + ---- - ----- - ----- - ----- - ---- + ---- - ---- - ----- - ---- + 2 11 9 7 5 3 10 8 6 4 a a a a a a a a a a 6 7 7 7 7 8 8 8 9 9 z 6 z 7 z 3 z 2 z 4 z 6 z 2 z z z > -- + ---- + ---- + ---- + ---- + ---- + ---- + ---- + -- + -- 2 9 7 5 3 8 6 4 7 5 a a a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 56]], Vassiliev[3][Knot[10, 56]]} |
Out[19]= | {0, -2} |
In[20]:= | Kh[Knot[10, 56]][q, t] |
Out[20]= | 3 3 5 1 q q 5 7 7 2 9 2 9 3 4 q + 2 q + ---- + - + -- + 4 q t + 3 q t + 6 q t + 4 q t + 5 q t + 2 t t q t 11 3 11 4 13 4 13 5 15 5 15 6 > 6 q t + 5 q t + 5 q t + 4 q t + 5 q t + 2 q t + 17 6 17 7 19 7 21 8 > 4 q t + q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 56], 2][q] |
Out[21]= | -2 2 2 3 4 5 6 7 8 9 q - - + 7 q - 9 q - 4 q + 25 q - 21 q - 20 q + 55 q - 26 q - 50 q + q 10 11 12 13 14 15 16 17 > 83 q - 19 q - 79 q + 94 q - 4 q - 90 q + 83 q + 9 q - 18 19 20 21 22 23 24 25 > 76 q + 54 q + 13 q - 45 q + 23 q + 9 q - 16 q + 6 q + 26 27 28 > 2 q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1056 |
|