© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1055Visit 1055's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1055's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X5,12,6,13 X15,18,16,19 X9,16,10,17 X17,10,18,11 X13,20,14,1 X19,14,20,15 X11,6,12,7 X7283 |
Gauss Code: | {-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, 7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 12 2 16 6 20 18 10 14 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 5t-2 - 15t-1 + 21 - 15t + 5t2 |
Conway Polynomial: | 1 + 5z2 + 5z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {61, -4} |
Jones Polynomial: | q-12 - 3q-11 + 5q-10 - 8q-9 + 9q-8 - 10q-7 + 10q-6 - 7q-5 + 5q-4 - 2q-3 + q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-38 + q-36 - 2q-34 - q-30 - 3q-28 + q-26 - q-24 + q-22 + q-20 + 3q-16 - q-14 + q-12 + 2q-10 - q-8 + q-6 |
HOMFLY-PT Polynomial: | a4 + 2a4z2 + a4z4 + a6 + 3a6z2 + 2a6z4 + a8 + 3a8z2 + 2a8z4 - 3a10 - 3a10z2 + a12 |
Kauffman Polynomial: | a4 - 2a4z2 + a4z4 - 2a5z3 + 2a5z5 - a6 + 2a6z2 - 3a6z4 + 3a6z6 + 2a7z - 2a7z3 - a7z5 + 3a7z7 + a8 - 3a8z2 + 5a8z4 - 4a8z6 + 3a8z8 - 4a9z + 15a9z3 - 16a9z5 + 5a9z7 + a9z9 + 3a10 - 8a10z2 + 13a10z4 - 15a10z6 + 6a10z8 - 9a11z + 24a11z3 - 23a11z5 + 5a11z7 + a11z9 + a12 + a12z2 + a12z4 - 7a12z6 + 3a12z8 - 3a13z + 9a13z3 - 10a13z5 + 3a13z7 + 2a14z2 - 3a14z4 + a14z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {5, -10} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 1055. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-34 - 3q-33 + 10q-31 - 12q-30 - 8q-29 + 31q-28 - 18q-27 - 30q-26 + 55q-25 - 12q-24 - 57q-23 + 68q-22 + 2q-21 - 77q-20 + 67q-19 + 16q-18 - 78q-17 + 52q-16 + 21q-15 - 57q-14 + 29q-13 + 15q-12 - 28q-11 + 13q-10 + 5q-9 - 9q-8 + 5q-7 + q-6 - 2q-5 + q-4 |
3 | q-66 - 3q-65 + 5q-63 + 5q-62 - 12q-61 - 14q-60 + 19q-59 + 30q-58 - 20q-57 - 56q-56 + 12q-55 + 86q-54 + 11q-53 - 114q-52 - 46q-51 + 126q-50 + 100q-49 - 134q-48 - 145q-47 + 110q-46 + 201q-45 - 85q-44 - 236q-43 + 38q-42 + 275q-41 - 289q-39 - 50q-38 + 302q-37 + 90q-36 - 298q-35 - 125q-34 + 277q-33 + 156q-32 - 250q-31 - 160q-30 + 193q-29 + 169q-28 - 153q-27 - 140q-26 + 92q-25 + 118q-24 - 61q-23 - 73q-22 + 23q-21 + 51q-20 - 20q-19 - 16q-18 + 5q-17 + 10q-16 - 9q-15 + 2q-14 + 4q-13 + q-12 - 6q-11 + 3q-10 + q-9 + q-8 - 2q-7 + q-6 |
4 | q-108 - 3q-107 + 5q-105 + 5q-103 - 19q-102 - 7q-101 + 20q-100 + 11q-99 + 36q-98 - 58q-97 - 53q-96 + 19q-95 + 35q-94 + 149q-93 - 69q-92 - 142q-91 - 77q-90 - 17q-89 + 346q-88 + 57q-87 - 144q-86 - 255q-85 - 283q-84 + 445q-83 + 291q-82 + 116q-81 - 301q-80 - 715q-79 + 248q-78 + 390q-77 + 583q-76 - 16q-75 - 1045q-74 - 201q-73 + 168q-72 + 1009q-71 + 527q-70 - 1093q-69 - 667q-68 - 295q-67 + 1225q-66 + 1100q-65 - 905q-64 - 1005q-63 - 802q-62 + 1259q-61 + 1555q-60 - 618q-59 - 1198q-58 - 1230q-57 + 1149q-56 + 1845q-55 - 269q-54 - 1221q-53 - 1537q-52 + 862q-51 + 1891q-50 + 130q-49 - 985q-48 - 1626q-47 + 399q-46 + 1590q-45 + 446q-44 - 514q-43 - 1379q-42 - 43q-41 + 1001q-40 + 492q-39 - 42q-38 - 867q-37 - 237q-36 + 421q-35 + 296q-34 + 177q-33 - 377q-32 - 180q-31 + 98q-30 + 78q-29 + 159q-28 - 107q-27 - 66q-26 + 6q-25 - 16q-24 + 76q-23 - 21q-22 - 8q-21 - 24q-19 + 25q-18 - 4q-17 + 3q-16 + 2q-15 - 10q-14 + 6q-13 - q-12 + q-11 + q-10 - 2q-9 + q-8 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 55]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[15, 18, 16, 19], > X[9, 16, 10, 17], X[17, 10, 18, 11], X[13, 20, 14, 1], X[19, 14, 20, 15], > X[11, 6, 12, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 55]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, > 7] |
In[4]:= | DTCode[Knot[10, 55]] |
Out[4]= | DTCode[4, 8, 12, 2, 16, 6, 20, 18, 10, 14] |
In[5]:= | br = BR[Knot[10, 55]] |
Out[5]= | BR[5, {-1, -1, -1, -2, 1, 3, -2, -4, -3, -3, -3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 55]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 55]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 55]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 55]][t] |
Out[10]= | 5 15 2 21 + -- - -- - 15 t + 5 t 2 t t |
In[11]:= | Conway[Knot[10, 55]][z] |
Out[11]= | 2 4 1 + 5 z + 5 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 55]} |
In[13]:= | {KnotDet[Knot[10, 55]], KnotSignature[Knot[10, 55]]} |
Out[13]= | {61, -4} |
In[14]:= | Jones[Knot[10, 55]][q] |
Out[14]= | -12 3 5 8 9 10 10 7 5 2 -2 q - --- + --- - -- + -- - -- + -- - -- + -- - -- + q 11 10 9 8 7 6 5 4 3 q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 55]} |
In[16]:= | A2Invariant[Knot[10, 55]][q] |
Out[16]= | -38 -36 2 -30 3 -26 -24 -22 -20 3 -14 q + q - --- - q - --- + q - q + q + q + --- - q + 34 28 16 q q q -12 2 -8 -6 > q + --- - q + q 10 q |
In[17]:= | HOMFLYPT[Knot[10, 55]][a, z] |
Out[17]= | 4 6 8 10 12 4 2 6 2 8 2 10 2 4 4 a + a + a - 3 a + a + 2 a z + 3 a z + 3 a z - 3 a z + a z + 6 4 8 4 > 2 a z + 2 a z |
In[18]:= | Kauffman[Knot[10, 55]][a, z] |
Out[18]= | 4 6 8 10 12 7 9 11 13 4 2 a - a + a + 3 a + a + 2 a z - 4 a z - 9 a z - 3 a z - 2 a z + 6 2 8 2 10 2 12 2 14 2 5 3 7 3 > 2 a z - 3 a z - 8 a z + a z + 2 a z - 2 a z - 2 a z + 9 3 11 3 13 3 4 4 6 4 8 4 10 4 > 15 a z + 24 a z + 9 a z + a z - 3 a z + 5 a z + 13 a z + 12 4 14 4 5 5 7 5 9 5 11 5 13 5 > a z - 3 a z + 2 a z - a z - 16 a z - 23 a z - 10 a z + 6 6 8 6 10 6 12 6 14 6 7 7 9 7 > 3 a z - 4 a z - 15 a z - 7 a z + a z + 3 a z + 5 a z + 11 7 13 7 8 8 10 8 12 8 9 9 11 9 > 5 a z + 3 a z + 3 a z + 6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 55]], Vassiliev[3][Knot[10, 55]]} |
Out[19]= | {5, -10} |
In[20]:= | Kh[Knot[10, 55]][q, t] |
Out[20]= | -5 -3 1 2 1 3 2 5 3 q + q + ------- + ------ + ------ + ------ + ------ + ------ + ------ + 25 10 23 9 21 9 21 8 19 8 19 7 17 7 q t q t q t q t q t q t q t 4 5 6 4 4 6 3 4 > ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 17 6 15 6 15 5 13 5 13 4 11 4 11 3 9 3 q t q t q t q t q t q t q t q t 2 3 2 > ----- + ----- + ---- 9 2 7 2 5 q t q t q t |
In[21]:= | ColouredJones[Knot[10, 55], 2][q] |
Out[21]= | -34 3 10 12 8 31 18 30 55 12 57 68 2 q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- + --- - 33 31 30 29 28 27 26 25 24 23 22 21 q q q q q q q q q q q q 77 67 16 78 52 21 57 29 15 28 13 5 9 > --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + -- - -- + 20 19 18 17 16 15 14 13 12 11 10 9 8 q q q q q q q q q q q q q 5 -6 2 -4 > -- + q - -- + q 7 5 q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1055 |
|