© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1054Visit 1054's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1054's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X7,12,8,13 X11,8,12,9 X13,19,14,18 X5,17,6,16 X17,7,18,6 X15,1,16,20 X19,15,20,14 X9,2,10,3 |
Gauss Code: | {-1, 10, -2, 1, -6, 7, -3, 4, -10, 2, -4, 3, -5, 9, -8, 6, -7, 5, -9, 8} |
DT (Dowker-Thistlethwaite) Code: | 4 10 16 12 2 8 18 20 6 14 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 6t-2 + 10t-1 - 11 + 10t - 6t2 + 2t3 |
Conway Polynomial: | 1 + 4z2 + 6z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {1012, ...} |
Determinant and Signature: | {47, 2} |
Jones Polynomial: | - q-4 + 2q-3 - 4q-2 + 6q-1 - 6 + 8q - 7q2 + 6q3 - 4q4 + 2q5 - q6 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-12 - q-8 - q-6 + q-4 + 3 + 2q2 + q4 + 2q6 - q8 + q10 - q12 - q14 - q18 |
HOMFLY-PT Polynomial: | - 2a-4 - 3a-4z2 - a-4z4 + 2a-2 + 5a-2z2 + 4a-2z4 + a-2z6 + 3 + 5z2 + 4z4 + z6 - 2a2 - 3a2z2 - a2z4 |
Kauffman Polynomial: | - a-7z + a-7z3 - a-6z2 + 2a-6z4 + a-5z - 2a-5z3 + 3a-5z5 - 2a-4 + 5a-4z2 - 6a-4z4 + 4a-4z6 + a-3z + 2a-3z3 - 7a-3z5 + 4a-3z7 - 2a-2 + 5a-2z2 - 3a-2z4 - 5a-2z6 + 3a-2z8 - 5a-1z + 17a-1z3 - 18a-1z5 + 3a-1z7 + a-1z9 + 3 - 7z2 + 17z4 - 18z6 + 5z8 - 8az + 20az3 - 13az5 + az9 + 2a2 - 6a2z2 + 12a2z4 - 9a2z6 + 2a2z8 - 4a3z + 8a3z3 - 5a3z5 + a3z7 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {4, 2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1054. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-13 - 2q-12 - q-11 + 7q-10 - 5q-9 - 9q-8 + 17q-7 - 3q-6 - 22q-5 + 24q-4 + 5q-3 - 33q-2 + 24q-1 + 16 - 38q + 18q2 + 23q3 - 35q4 + 9q5 + 23q6 - 26q7 + 4q8 + 14q9 - 15q10 + 4q11 + 5q12 - 7q13 + 3q14 + q15 - 2q16 + q17 |
3 | - q-27 + 2q-26 + q-25 - 2q-24 - 6q-23 + 4q-22 + 11q-21 - 20q-19 - 6q-18 + 24q-17 + 21q-16 - 28q-15 - 32q-14 + 19q-13 + 47q-12 - 9q-11 - 54q-10 - 6q-9 + 53q-8 + 23q-7 - 50q-6 - 34q-5 + 35q-4 + 50q-3 - 28q-2 - 48q-1 + 3 + 64q + 5q2 - 55q3 - 34q4 + 65q5 + 42q6 - 50q7 - 65q8 + 49q9 + 66q10 - 30q11 - 70q12 + 20q13 + 56q14 - 5q15 - 44q16 - q17 + 27q18 + 2q19 - 11q20 - 5q21 + 5q22 + q23 + 2q24 - 2q25 - q26 - q27 + 4q28 - 2q29 - q31 + 2q32 - q33 |
4 | q-46 - 2q-45 - q-44 + 2q-43 + q-42 + 7q-41 - 8q-40 - 9q-39 + q-37 + 32q-36 - 4q-35 - 21q-34 - 22q-33 - 27q-32 + 64q-31 + 28q-30 + 5q-29 - 37q-28 - 100q-27 + 48q-26 + 43q-25 + 77q-24 + 20q-23 - 150q-22 - 15q-21 - 29q-20 + 110q-19 + 131q-18 - 104q-17 - 28q-16 - 153q-15 + 31q-14 + 188q-13 + 2q-12 + 67q-11 - 222q-10 - 108q-9 + 133q-8 + 70q-7 + 225q-6 - 190q-5 - 225q-4 + 9q-3 + 72q-2 + 371q-1 - 102 - 295q - 122q2 + 41q3 + 487q4 + q5 - 347q6 - 251q7 + 6q8 + 583q9 + 120q10 - 373q11 - 377q12 - 63q13 + 623q14 + 252q15 - 315q16 - 444q17 - 171q18 + 537q19 + 326q20 - 167q21 - 376q22 - 245q23 + 344q24 + 275q25 - 32q26 - 210q27 - 213q28 + 161q29 + 145q30 + 19q31 - 68q32 - 125q33 + 64q34 + 46q35 + 13q36 - 6q37 - 55q38 + 28q39 + 5q40 + 3q41 + 7q42 - 22q43 + 13q44 - 2q45 + 4q47 - 8q48 + 5q49 - q50 + q52 - 2q53 + q54 |
5 | - q-70 + 2q-69 + q-68 - 2q-67 - q-66 - 2q-65 - 3q-64 + 6q-63 + 11q-62 - 6q-60 - 12q-59 - 19q-58 + 28q-56 + 32q-55 + 14q-54 - 15q-53 - 55q-52 - 54q-51 - 2q-50 + 57q-49 + 88q-48 + 59q-47 - 29q-46 - 111q-45 - 118q-44 - 46q-43 + 84q-42 + 172q-41 + 133q-40 + q-39 - 149q-38 - 227q-37 - 136q-36 + 74q-35 + 241q-34 + 257q-33 + 105q-32 - 168q-31 - 346q-30 - 281q-29 - 4q-28 + 300q-27 + 440q-26 + 256q-25 - 158q-24 - 496q-23 - 487q-22 - 111q-21 + 411q-20 + 679q-19 + 425q-18 - 213q-17 - 733q-16 - 731q-15 - 119q-14 + 687q-13 + 981q-12 + 459q-11 - 488q-10 - 1125q-9 - 851q-8 + 246q-7 + 1187q-6 + 1136q-5 + 88q-4 - 1141q-3 - 1442q-2 - 373q-1 + 1082 + 1598q + 683q2 - 948q3 - 1818q4 - 914q5 + 888q6 + 1909q7 + 1163q8 - 776q9 - 2108q10 - 1368q11 + 737q12 + 2217q13 + 1619q14 - 622q15 - 2402q16 - 1854q17 + 501q18 + 2456q19 + 2133q20 - 273q21 - 2486q22 - 2325q23 - 2q24 + 2307q25 + 2471q26 + 332q27 - 2051q28 - 2432q29 - 611q30 + 1624q31 + 2261q32 + 824q33 - 1193q34 - 1937q35 - 892q36 + 771q37 + 1524q38 + 849q39 - 432q40 - 1116q41 - 709q42 + 213q43 + 746q44 + 520q45 - 70q46 - 465q47 - 356q48 + 23q49 + 264q50 + 211q51 + 7q52 - 145q53 - 119q54 + 66q56 + 57q57 + 13q58 - 40q59 - 29q60 + 7q61 + 8q62 + 7q63 + 9q64 - 9q65 - 9q66 + 9q67 - q68 - 4q69 + 5q70 - 2q71 - 3q72 + 5q73 - q74 - 2q75 + q76 - q78 + 2q79 - q80 |
6 | q-99 - 2q-98 - q-97 + 2q-96 + q-95 + 2q-94 - 2q-93 + 5q-92 - 8q-91 - 11q-90 + 3q-89 + 5q-88 + 14q-87 + 2q-86 + 24q-85 - 14q-84 - 37q-83 - 23q-82 - 15q-81 + 20q-80 + 13q-79 + 98q-78 + 32q-77 - 27q-76 - 61q-75 - 95q-74 - 65q-73 - 76q-72 + 152q-71 + 142q-70 + 133q-69 + 57q-68 - 65q-67 - 178q-66 - 350q-65 - 52q-64 + 18q-63 + 242q-62 + 330q-61 + 328q-60 + 102q-59 - 403q-58 - 340q-57 - 512q-56 - 209q-55 + 131q-54 + 633q-53 + 759q-52 + 269q-51 + 99q-50 - 667q-49 - 890q-48 - 886q-47 - 80q-46 + 690q-45 + 933q-44 + 1317q-43 + 453q-42 - 442q-41 - 1546q-40 - 1461q-39 - 807q-38 + 91q-37 + 1730q-36 + 2018q-35 + 1529q-34 - 350q-33 - 1640q-32 - 2439q-31 - 2245q-30 - q-29 + 1982q-28 + 3337q-27 + 2278q-26 + 464q-25 - 2151q-24 - 4123q-23 - 3054q-22 - 422q-21 + 3031q-20 + 4257q-19 + 3739q-18 + 495q-17 - 3804q-16 - 5340q-15 - 3892q-14 + 454q-13 + 4103q-12 + 6224q-11 + 4114q-10 - 1381q-9 - 5650q-8 - 6632q-7 - 3006q-6 + 2077q-5 + 6961q-4 + 7113q-3 + 1812q-2 - 4355q-1 - 7898 - 5955q - 563q2 + 6380q3 + 8900q4 + 4544q5 - 2609q6 - 8143q7 - 7915q8 - 2727q9 + 5532q10 + 9918q11 + 6443q12 - 1347q13 - 8315q14 - 9334q15 - 4175q16 + 5165q17 + 10991q18 + 8026q19 - 566q20 - 8916q21 - 10963q22 - 5607q23 + 4956q24 + 12321q25 + 10012q26 + 719q27 - 9196q28 - 12726q29 - 7772q30 + 3635q31 + 12757q32 + 12044q33 + 3223q34 - 7669q35 - 13141q36 - 10008q37 + 661q38 + 10773q39 + 12395q40 + 5889q41 - 4152q42 - 10831q43 - 10386q44 - 2449q45 + 6682q46 + 9938q47 + 6652q48 - 584q49 - 6606q50 - 8100q51 - 3642q52 + 2738q53 + 5911q54 + 5048q55 + 1109q56 - 2817q57 - 4658q58 - 2788q59 + 617q60 + 2554q61 + 2660q62 + 1052q63 - 785q64 - 2011q65 - 1376q66 + 48q67 + 803q68 + 996q69 + 491q70 - 111q71 - 699q72 - 473q73 + 28q74 + 181q75 + 278q76 + 144q77 + 23q78 - 226q79 - 125q80 + 45q81 + 19q82 + 66q83 + 30q84 + 31q85 - 78q86 - 30q87 + 30q88 - 11q89 + 18q90 + 3q91 + 20q92 - 28q93 - 6q94 + 14q95 - 11q96 + 8q97 - 3q98 + 9q99 - 8q100 - q101 + 5q102 - 6q103 + 4q104 - 2q105 + 2q106 - q107 + q109 - 2q110 + q111 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 54]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[7, 12, 8, 13], X[11, 8, 12, 9], > X[13, 19, 14, 18], X[5, 17, 6, 16], X[17, 7, 18, 6], X[15, 1, 16, 20], > X[19, 15, 20, 14], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[10, 54]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -6, 7, -3, 4, -10, 2, -4, 3, -5, 9, -8, 6, -7, 5, -9, > 8] |
In[4]:= | DTCode[Knot[10, 54]] |
Out[4]= | DTCode[4, 10, 16, 12, 2, 8, 18, 20, 6, 14] |
In[5]:= | br = BR[Knot[10, 54]] |
Out[5]= | BR[4, {1, 1, 1, -2, 1, 1, -2, -3, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 54]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 54]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 54]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, {2, 3}, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 54]][t] |
Out[10]= | 2 6 10 2 3 -11 + -- - -- + -- + 10 t - 6 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 54]][z] |
Out[11]= | 2 4 6 1 + 4 z + 6 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 12], Knot[10, 54]} |
In[13]:= | {KnotDet[Knot[10, 54]], KnotSignature[Knot[10, 54]]} |
Out[13]= | {47, 2} |
In[14]:= | Jones[Knot[10, 54]][q] |
Out[14]= | -4 2 4 6 2 3 4 5 6 -6 - q + -- - -- + - + 8 q - 7 q + 6 q - 4 q + 2 q - q 3 2 q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 54]} |
In[16]:= | A2Invariant[Knot[10, 54]][q] |
Out[16]= | -12 -8 -6 -4 2 4 6 8 10 12 14 18 3 - q - q - q + q + 2 q + q + 2 q - q + q - q - q - q |
In[17]:= | HOMFLYPT[Knot[10, 54]][a, z] |
Out[17]= | 2 2 4 4 2 2 2 2 3 z 5 z 2 2 4 z 4 z 2 4 3 - -- + -- - 2 a + 5 z - ---- + ---- - 3 a z + 4 z - -- + ---- - a z + 4 2 4 2 4 2 a a a a a a 6 6 z > z + -- 2 a |
In[18]:= | Kauffman[Knot[10, 54]][a, z] |
Out[18]= | 2 2 2 2 2 z z z 5 z 3 2 z 5 z 3 - -- - -- + 2 a - -- + -- + -- - --- - 8 a z - 4 a z - 7 z - -- + ---- + 4 2 7 5 3 a 6 4 a a a a a a a 2 3 3 3 3 5 z 2 2 z 2 z 2 z 17 z 3 3 3 4 > ---- - 6 a z + -- - ---- + ---- + ----- + 20 a z + 8 a z + 17 z + 2 7 5 3 a a a a a 4 4 4 5 5 5 2 z 6 z 3 z 2 4 3 z 7 z 18 z 5 3 5 > ---- - ---- - ---- + 12 a z + ---- - ---- - ----- - 13 a z - 5 a z - 6 4 2 5 3 a a a a a a 6 6 7 7 8 6 4 z 5 z 2 6 4 z 3 z 3 7 8 3 z > 18 z + ---- - ---- - 9 a z + ---- + ---- + a z + 5 z + ---- + 4 2 3 a 2 a a a a 9 2 8 z 9 > 2 a z + -- + a z a |
In[19]:= | {Vassiliev[2][Knot[10, 54]], Vassiliev[3][Knot[10, 54]]} |
Out[19]= | {4, 2} |
In[20]:= | Kh[Knot[10, 54]][q, t] |
Out[20]= | 3 1 1 1 3 1 3 3 3 3 q 5 q + 4 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + --- + 9 5 7 4 5 4 5 3 3 3 3 2 2 q t t q t q t q t q t q t q t q t 3 5 5 2 7 2 7 3 9 3 9 4 11 4 > 3 q t + 4 q t + 3 q t + 3 q t + q t + 3 q t + q t + q t + 13 5 > q t |
In[21]:= | ColouredJones[Knot[10, 54], 2][q] |
Out[21]= | -13 2 -11 7 5 9 17 3 22 24 5 33 24 16 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- + -- - 12 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q 2 3 4 5 6 7 8 9 > 38 q + 18 q + 23 q - 35 q + 9 q + 23 q - 26 q + 4 q + 14 q - 10 11 12 13 14 15 16 17 > 15 q + 4 q + 5 q - 7 q + 3 q + q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1054 |
|