© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1053Visit 1053's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1053's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X5,14,6,15 X15,20,16,1 X9,16,10,17 X19,10,20,11 X11,18,12,19 X17,12,18,13 X13,6,14,7 X7283 |
Gauss Code: | {-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -7, 8, -9, 3, -4, 5, -8, 7, -6, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 8 14 2 16 18 6 20 12 10 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 6t-2 - 18t-1 + 25 - 18t + 6t2 |
Conway Polynomial: | 1 + 6z2 + 6z4 |
Other knots with the same Alexander/Conway Polynomial: | {K11a95, ...} |
Determinant and Signature: | {73, -4} |
Jones Polynomial: | q-12 - 3q-11 + 5q-10 - 9q-9 + 11q-8 - 12q-7 + 12q-6 - 9q-5 + 7q-4 - 3q-3 + q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-38 + q-36 - 2q-34 - q-30 - 4q-28 + q-26 - q-24 + q-22 + 2q-20 + 4q-16 - q-14 + q-12 + 2q-10 - 2q-8 + q-6 |
HOMFLY-PT Polynomial: | a4z2 + a4z4 + 3a6 + 6a6z2 + 3a6z4 + 2a8z2 + 2a8z4 - 3a10 - 3a10z2 + a12 |
Kauffman Polynomial: | - a4z2 + a4z4 - 2a5z3 + 3a5z5 - 3a6 + 8a6z2 - 9a6z4 + 6a6z6 + a7z + a7z3 - 6a7z5 + 6a7z7 + 4a8z2 - 7a8z4 + 4a8z8 - 7a9z + 21a9z3 - 26a9z5 + 10a9z7 + a9z9 + 3a10 - 5a10z2 + 6a10z4 - 13a10z6 + 7a10z8 - 11a11z + 28a11z3 - 27a11z5 + 7a11z7 + a11z9 + a12 + 2a12z2 - 6a12z6 + 3a12z8 - 3a13z + 10a13z3 - 10a13z5 + 3a13z7 + 2a14z2 - 3a14z4 + a14z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {6, -13} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 1053. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-34 - 3q-33 + 10q-31 - 13q-30 - 7q-29 + 35q-28 - 25q-27 - 32q-26 + 73q-25 - 28q-24 - 71q-23 + 105q-22 - 16q-21 - 106q-20 + 115q-19 + 4q-18 - 117q-17 + 98q-16 + 18q-15 - 95q-14 + 62q-13 + 20q-12 - 54q-11 + 27q-10 + 11q-9 - 19q-8 + 7q-7 + 3q-6 - 3q-5 + q-4 |
3 | q-66 - 3q-65 + 5q-63 + 5q-62 - 13q-61 - 13q-60 + 22q-59 + 31q-58 - 30q-57 - 63q-56 + 32q-55 + 107q-54 - 16q-53 - 167q-52 - 14q-51 + 218q-50 + 82q-49 - 278q-48 - 151q-47 + 299q-46 + 257q-45 - 320q-44 - 346q-43 + 301q-42 + 447q-41 - 275q-40 - 525q-39 + 225q-38 + 592q-37 - 170q-36 - 633q-35 + 112q-34 + 637q-33 - 40q-32 - 627q-31 - 7q-30 + 560q-29 + 68q-28 - 495q-27 - 85q-26 + 383q-25 + 113q-24 - 298q-23 - 94q-22 + 194q-21 + 89q-20 - 134q-19 - 53q-18 + 71q-17 + 41q-16 - 44q-15 - 20q-14 + 22q-13 + 11q-12 - 11q-11 - 3q-10 + 3q-9 + 3q-8 - 3q-7 + q-6 |
4 | q-108 - 3q-107 + 5q-105 + 5q-103 - 20q-102 - 6q-101 + 23q-100 + 11q-99 + 34q-98 - 71q-97 - 56q-96 + 41q-95 + 58q-94 + 160q-93 - 135q-92 - 208q-91 - 44q-90 + 98q-89 + 492q-88 - 60q-87 - 415q-86 - 382q-85 - 86q-84 + 975q-83 + 349q-82 - 387q-81 - 908q-80 - 746q-79 + 1265q-78 + 1019q-77 + 172q-76 - 1244q-75 - 1796q-74 + 1024q-73 + 1567q-72 + 1193q-71 - 1077q-70 - 2834q-69 + 297q-68 + 1702q-67 + 2303q-66 - 470q-65 - 3538q-64 - 613q-63 + 1458q-62 + 3208q-61 + 304q-60 - 3839q-59 - 1452q-58 + 993q-57 + 3761q-56 + 1064q-55 - 3719q-54 - 2086q-53 + 372q-52 + 3841q-51 + 1701q-50 - 3120q-49 - 2342q-48 - 337q-47 + 3311q-46 + 2030q-45 - 2104q-44 - 2058q-43 - 901q-42 + 2274q-41 + 1854q-40 - 1038q-39 - 1322q-38 - 1034q-37 + 1163q-36 + 1252q-35 - 339q-34 - 554q-33 - 749q-32 + 428q-31 + 603q-30 - 88q-29 - 111q-28 - 367q-27 + 127q-26 + 212q-25 - 45q-24 + 11q-23 - 131q-22 + 44q-21 + 61q-20 - 29q-19 + 15q-18 - 37q-17 + 14q-16 + 16q-15 - 11q-14 + 5q-13 - 7q-12 + 3q-11 + 3q-10 - 3q-9 + q-8 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 53]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[15, 20, 16, 1], > X[9, 16, 10, 17], X[19, 10, 20, 11], X[11, 18, 12, 19], X[17, 12, 18, 13], > X[13, 6, 14, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 53]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -7, 8, -9, 3, -4, 5, -8, 7, -6, > 4] |
In[4]:= | DTCode[Knot[10, 53]] |
Out[4]= | DTCode[4, 8, 14, 2, 16, 18, 6, 20, 12, 10] |
In[5]:= | br = BR[Knot[10, 53]] |
Out[5]= | BR[5, {-1, -1, -2, 1, -2, 3, -2, -4, -3, -3, -3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 53]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 53]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 53]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, {2, 3}, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 53]][t] |
Out[10]= | 6 18 2 25 + -- - -- - 18 t + 6 t 2 t t |
In[11]:= | Conway[Knot[10, 53]][z] |
Out[11]= | 2 4 1 + 6 z + 6 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 53], Knot[11, Alternating, 95]} |
In[13]:= | {KnotDet[Knot[10, 53]], KnotSignature[Knot[10, 53]]} |
Out[13]= | {73, -4} |
In[14]:= | Jones[Knot[10, 53]][q] |
Out[14]= | -12 3 5 9 11 12 12 9 7 3 -2 q - --- + --- - -- + -- - -- + -- - -- + -- - -- + q 11 10 9 8 7 6 5 4 3 q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 53]} |
In[16]:= | A2Invariant[Knot[10, 53]][q] |
Out[16]= | -38 -36 2 -30 4 -26 -24 -22 2 4 -14 -12 q + q - --- - q - --- + q - q + q + --- + --- - q + q + 34 28 20 16 q q q q 2 2 -6 > --- - -- + q 10 8 q q |
In[17]:= | HOMFLYPT[Knot[10, 53]][a, z] |
Out[17]= | 6 10 12 4 2 6 2 8 2 10 2 4 4 6 4 3 a - 3 a + a + a z + 6 a z + 2 a z - 3 a z + a z + 3 a z + 8 4 > 2 a z |
In[18]:= | Kauffman[Knot[10, 53]][a, z] |
Out[18]= | 6 10 12 7 9 11 13 4 2 6 2 -3 a + 3 a + a + a z - 7 a z - 11 a z - 3 a z - a z + 8 a z + 8 2 10 2 12 2 14 2 5 3 7 3 9 3 > 4 a z - 5 a z + 2 a z + 2 a z - 2 a z + a z + 21 a z + 11 3 13 3 4 4 6 4 8 4 10 4 14 4 > 28 a z + 10 a z + a z - 9 a z - 7 a z + 6 a z - 3 a z + 5 5 7 5 9 5 11 5 13 5 6 6 > 3 a z - 6 a z - 26 a z - 27 a z - 10 a z + 6 a z - 10 6 12 6 14 6 7 7 9 7 11 7 13 7 > 13 a z - 6 a z + a z + 6 a z + 10 a z + 7 a z + 3 a z + 8 8 10 8 12 8 9 9 11 9 > 4 a z + 7 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 53]], Vassiliev[3][Knot[10, 53]]} |
Out[19]= | {6, -13} |
In[20]:= | Kh[Knot[10, 53]][q, t] |
Out[20]= | -5 -3 1 2 1 3 2 6 3 q + q + ------- + ------ + ------ + ------ + ------ + ------ + ------ + 25 10 23 9 21 9 21 8 19 8 19 7 17 7 q t q t q t q t q t q t q t 5 6 7 5 5 7 4 5 > ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 17 6 15 6 15 5 13 5 13 4 11 4 11 3 9 3 q t q t q t q t q t q t q t q t 3 4 3 > ----- + ----- + ---- 9 2 7 2 5 q t q t q t |
In[21]:= | ColouredJones[Knot[10, 53], 2][q] |
Out[21]= | -34 3 10 13 7 35 25 32 73 28 71 105 16 q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - 33 31 30 29 28 27 26 25 24 23 22 21 q q q q q q q q q q q q 106 115 4 117 98 18 95 62 20 54 27 11 19 > --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + -- - -- + 20 19 18 17 16 15 14 13 12 11 10 9 8 q q q q q q q q q q q q q 7 3 3 -4 > -- + -- - -- + q 7 6 5 q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1053 |
|