© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.52
1052
10.54
1054
    10.53
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 1053   

Visit 1053's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 1053's page at Knotilus!

Acknowledgement

10.53
KnotPlot

PD Presentation: X1425 X3849 X5,14,6,15 X15,20,16,1 X9,16,10,17 X19,10,20,11 X11,18,12,19 X17,12,18,13 X13,6,14,7 X7283

Gauss Code: {-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -7, 8, -9, 3, -4, 5, -8, 7, -6, 4}

DT (Dowker-Thistlethwaite) Code: 4 8 14 2 16 18 6 20 12 10

Minimum Braid Representative:


Length is 12, width is 5
Braid index is 5

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 2--3 2 3 / NotAvailable 1

Alexander Polynomial: 6t-2 - 18t-1 + 25 - 18t + 6t2

Conway Polynomial: 1 + 6z2 + 6z4

Other knots with the same Alexander/Conway Polynomial: {K11a95, ...}

Determinant and Signature: {73, -4}

Jones Polynomial: q-12 - 3q-11 + 5q-10 - 9q-9 + 11q-8 - 12q-7 + 12q-6 - 9q-5 + 7q-4 - 3q-3 + q-2

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-38 + q-36 - 2q-34 - q-30 - 4q-28 + q-26 - q-24 + q-22 + 2q-20 + 4q-16 - q-14 + q-12 + 2q-10 - 2q-8 + q-6

HOMFLY-PT Polynomial: a4z2 + a4z4 + 3a6 + 6a6z2 + 3a6z4 + 2a8z2 + 2a8z4 - 3a10 - 3a10z2 + a12

Kauffman Polynomial: - a4z2 + a4z4 - 2a5z3 + 3a5z5 - 3a6 + 8a6z2 - 9a6z4 + 6a6z6 + a7z + a7z3 - 6a7z5 + 6a7z7 + 4a8z2 - 7a8z4 + 4a8z8 - 7a9z + 21a9z3 - 26a9z5 + 10a9z7 + a9z9 + 3a10 - 5a10z2 + 6a10z4 - 13a10z6 + 7a10z8 - 11a11z + 28a11z3 - 27a11z5 + 7a11z7 + a11z9 + a12 + 2a12z2 - 6a12z6 + 3a12z8 - 3a13z + 10a13z3 - 10a13z5 + 3a13z7 + 2a14z2 - 3a14z4 + a14z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {6, -13}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 1053. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -3          1
j = -5         31
j = -7        4  
j = -9       53  
j = -11      74   
j = -13     55    
j = -15    67     
j = -17   35      
j = -19  26       
j = -21 13        
j = -23 2         
j = -251          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-34 - 3q-33 + 10q-31 - 13q-30 - 7q-29 + 35q-28 - 25q-27 - 32q-26 + 73q-25 - 28q-24 - 71q-23 + 105q-22 - 16q-21 - 106q-20 + 115q-19 + 4q-18 - 117q-17 + 98q-16 + 18q-15 - 95q-14 + 62q-13 + 20q-12 - 54q-11 + 27q-10 + 11q-9 - 19q-8 + 7q-7 + 3q-6 - 3q-5 + q-4
3 q-66 - 3q-65 + 5q-63 + 5q-62 - 13q-61 - 13q-60 + 22q-59 + 31q-58 - 30q-57 - 63q-56 + 32q-55 + 107q-54 - 16q-53 - 167q-52 - 14q-51 + 218q-50 + 82q-49 - 278q-48 - 151q-47 + 299q-46 + 257q-45 - 320q-44 - 346q-43 + 301q-42 + 447q-41 - 275q-40 - 525q-39 + 225q-38 + 592q-37 - 170q-36 - 633q-35 + 112q-34 + 637q-33 - 40q-32 - 627q-31 - 7q-30 + 560q-29 + 68q-28 - 495q-27 - 85q-26 + 383q-25 + 113q-24 - 298q-23 - 94q-22 + 194q-21 + 89q-20 - 134q-19 - 53q-18 + 71q-17 + 41q-16 - 44q-15 - 20q-14 + 22q-13 + 11q-12 - 11q-11 - 3q-10 + 3q-9 + 3q-8 - 3q-7 + q-6
4 q-108 - 3q-107 + 5q-105 + 5q-103 - 20q-102 - 6q-101 + 23q-100 + 11q-99 + 34q-98 - 71q-97 - 56q-96 + 41q-95 + 58q-94 + 160q-93 - 135q-92 - 208q-91 - 44q-90 + 98q-89 + 492q-88 - 60q-87 - 415q-86 - 382q-85 - 86q-84 + 975q-83 + 349q-82 - 387q-81 - 908q-80 - 746q-79 + 1265q-78 + 1019q-77 + 172q-76 - 1244q-75 - 1796q-74 + 1024q-73 + 1567q-72 + 1193q-71 - 1077q-70 - 2834q-69 + 297q-68 + 1702q-67 + 2303q-66 - 470q-65 - 3538q-64 - 613q-63 + 1458q-62 + 3208q-61 + 304q-60 - 3839q-59 - 1452q-58 + 993q-57 + 3761q-56 + 1064q-55 - 3719q-54 - 2086q-53 + 372q-52 + 3841q-51 + 1701q-50 - 3120q-49 - 2342q-48 - 337q-47 + 3311q-46 + 2030q-45 - 2104q-44 - 2058q-43 - 901q-42 + 2274q-41 + 1854q-40 - 1038q-39 - 1322q-38 - 1034q-37 + 1163q-36 + 1252q-35 - 339q-34 - 554q-33 - 749q-32 + 428q-31 + 603q-30 - 88q-29 - 111q-28 - 367q-27 + 127q-26 + 212q-25 - 45q-24 + 11q-23 - 131q-22 + 44q-21 + 61q-20 - 29q-19 + 15q-18 - 37q-17 + 14q-16 + 16q-15 - 11q-14 + 5q-13 - 7q-12 + 3q-11 + 3q-10 - 3q-9 + q-8


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 53]]
Out[2]=   
PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[15, 20, 16, 1], 
 
>   X[9, 16, 10, 17], X[19, 10, 20, 11], X[11, 18, 12, 19], X[17, 12, 18, 13], 
 
>   X[13, 6, 14, 7], X[7, 2, 8, 3]]
In[3]:=
GaussCode[Knot[10, 53]]
Out[3]=   
GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -7, 8, -9, 3, -4, 5, -8, 7, -6, 
 
>   4]
In[4]:=
DTCode[Knot[10, 53]]
Out[4]=   
DTCode[4, 8, 14, 2, 16, 18, 6, 20, 12, 10]
In[5]:=
br = BR[Knot[10, 53]]
Out[5]=   
BR[5, {-1, -1, -2, 1, -2, 3, -2, -4, -3, -3, -3, -4}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{5, 12}
In[7]:=
BraidIndex[Knot[10, 53]]
Out[7]=   
5
In[8]:=
Show[DrawMorseLink[Knot[10, 53]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 53]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, {2, 3}, 2, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 53]][t]
Out[10]=   
     6    18             2
25 + -- - -- - 18 t + 6 t
      2   t
     t
In[11]:=
Conway[Knot[10, 53]][z]
Out[11]=   
       2      4
1 + 6 z  + 6 z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 53], Knot[11, Alternating, 95]}
In[13]:=
{KnotDet[Knot[10, 53]], KnotSignature[Knot[10, 53]]}
Out[13]=   
{73, -4}
In[14]:=
Jones[Knot[10, 53]][q]
Out[14]=   
 -12    3     5    9    11   12   12   9    7    3     -2
q    - --- + --- - -- + -- - -- + -- - -- + -- - -- + q
        11    10    9    8    7    6    5    4    3
       q     q     q    q    q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 53]}
In[16]:=
A2Invariant[Knot[10, 53]][q]
Out[16]=   
 -38    -36    2     -30    4     -26    -24    -22    2     4     -14    -12
q    + q    - --- - q    - --- + q    - q    + q    + --- + --- - q    + q    + 
               34           28                         20    16
              q            q                          q     q
 
     2    2     -6
>   --- - -- + q
     10    8
    q     q
In[17]:=
HOMFLYPT[Knot[10, 53]][a, z]
Out[17]=   
   6      10    12    4  2      6  2      8  2      10  2    4  4      6  4
3 a  - 3 a   + a   + a  z  + 6 a  z  + 2 a  z  - 3 a   z  + a  z  + 3 a  z  + 
 
       8  4
>   2 a  z
In[18]:=
Kauffman[Knot[10, 53]][a, z]
Out[18]=   
    6      10    12    7        9         11        13      4  2      6  2
-3 a  + 3 a   + a   + a  z - 7 a  z - 11 a   z - 3 a   z - a  z  + 8 a  z  + 
 
       8  2      10  2      12  2      14  2      5  3    7  3       9  3
>   4 a  z  - 5 a   z  + 2 a   z  + 2 a   z  - 2 a  z  + a  z  + 21 a  z  + 
 
        11  3       13  3    4  4      6  4      8  4      10  4      14  4
>   28 a   z  + 10 a   z  + a  z  - 9 a  z  - 7 a  z  + 6 a   z  - 3 a   z  + 
 
       5  5      7  5       9  5       11  5       13  5      6  6
>   3 a  z  - 6 a  z  - 26 a  z  - 27 a   z  - 10 a   z  + 6 a  z  - 
 
        10  6      12  6    14  6      7  7       9  7      11  7      13  7
>   13 a   z  - 6 a   z  + a   z  + 6 a  z  + 10 a  z  + 7 a   z  + 3 a   z  + 
 
       8  8      10  8      12  8    9  9    11  9
>   4 a  z  + 7 a   z  + 3 a   z  + a  z  + a   z
In[19]:=
{Vassiliev[2][Knot[10, 53]], Vassiliev[3][Knot[10, 53]]}
Out[19]=   
{6, -13}
In[20]:=
Kh[Knot[10, 53]][q, t]
Out[20]=   
 -5    -3      1        2        1        3        2        6        3
q   + q   + ------- + ------ + ------ + ------ + ------ + ------ + ------ + 
             25  10    23  9    21  9    21  8    19  8    19  7    17  7
            q   t     q   t    q   t    q   t    q   t    q   t    q   t
 
      5        6        7        5        5        7        4        5
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 
     17  6    15  6    15  5    13  5    13  4    11  4    11  3    9  3
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q  t
 
      3       4      3
>   ----- + ----- + ----
     9  2    7  2    5
    q  t    q  t    q  t
In[21]:=
ColouredJones[Knot[10, 53], 2][q]
Out[21]=   
 -34    3    10    13     7    35    25    32    73    28    71    105   16
q    - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - 
        33    31    30    29    28    27    26    25    24    23    22    21
       q     q     q     q     q     q     q     q     q     q     q     q
 
    106   115    4    117   98    18    95    62    20    54    27    11   19
>   --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + -- - -- + 
     20    19    18    17    16    15    14    13    12    11    10    9    8
    q     q     q     q     q     q     q     q     q     q     q     q    q
 
    7    3    3     -4
>   -- + -- - -- + q
     7    6    5
    q    q    q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1053
10.52
1052
10.54
1054