© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1052Visit 1052's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1052's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X8493 X14,6,15,5 X20,15,1,16 X16,9,17,10 X10,19,11,20 X18,11,19,12 X12,17,13,18 X2837 X4,14,5,13 |
Gauss Code: | {1, -9, 2, -10, 3, -1, 9, -2, 5, -6, 7, -8, 10, -3, 4, -5, 8, -7, 6, -4} |
DT (Dowker-Thistlethwaite) Code: | 6 8 14 2 16 18 4 20 12 10 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 7t-2 + 13t-1 - 15 + 13t - 7t2 + 2t3 |
Conway Polynomial: | 1 + 3z2 + 5z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {1023, ...} |
Determinant and Signature: | {59, 2} |
Jones Polynomial: | - q-4 + 2q-3 - 4q-2 + 7q-1 - 8 + 10q - 9q2 + 8q3 - 6q4 + 3q5 - q6 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-12 - q-8 - q-6 + 2q-4 + 3 + 2q2 + 2q6 - 2q8 + q10 - q12 - q14 + q16 - q18 |
HOMFLY-PT Polynomial: | - a-4 - 2a-4z2 - a-4z4 + 2a-2z2 + 3a-2z4 + a-2z6 + 4 + 6z2 + 4z4 + z6 - 2a2 - 3a2z2 - a2z4 |
Kauffman Polynomial: | a-7z3 + 3a-6z4 + 2a-5z - 5a-5z3 + 6a-5z5 - a-4 + 6a-4z2 - 12a-4z4 + 8a-4z6 + 2a-3z3 - 11a-3z5 + 7a-3z7 + 4a-2z2 - 9a-2z4 - 3a-2z6 + 4a-2z8 - 7a-1z + 24a-1z3 - 28a-1z5 + 7a-1z7 + a-1z9 + 4 - 9z2 + 19z4 - 20z6 + 6z8 - 9az + 24az3 - 16az5 + az7 + az9 + 2a2 - 7a2z2 + 13a2z4 - 9a2z6 + 2a2z8 - 4a3z + 8a3z3 - 5a3z5 + a3z7 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, 1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1052. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-13 - 2q-12 - q-11 + 7q-10 - 6q-9 - 9q-8 + 21q-7 - 6q-6 - 28q-5 + 37q-4 + 3q-3 - 52q-2 + 46q-1 + 20 - 70q + 43q2 + 35q3 - 73q4 + 30q5 + 41q6 - 60q7 + 17q8 + 31q9 - 37q10 + 9q11 + 14q12 - 15q13 + 4q14 + 3q15 - 3q16 + q17 |
3 | - q-27 + 2q-26 + q-25 - 2q-24 - 6q-23 + 5q-22 + 11q-21 - 2q-20 - 24q-19 - 2q-18 + 34q-17 + 20q-16 - 48q-15 - 41q-14 + 49q-13 + 73q-12 - 43q-11 - 105q-10 + 26q-9 + 130q-8 + 6q-7 - 155q-6 - 35q-5 + 160q-4 + 80q-3 - 169q-2 - 108q-1 + 150 + 155q - 145q2 - 173q3 + 107q4 + 211q5 - 88q6 - 216q7 + 47q8 + 228q9 - 24q10 - 210q11 - 6q12 + 190q13 + 18q14 - 156q15 - 22q16 + 117q17 + 20q18 - 85q19 - 9q20 + 53q21 + 5q22 - 35q23 + 2q24 + 19q25 - 4q26 - 9q27 + 4q28 + 3q29 - q30 - 3q31 + 3q32 - q33 |
4 | q-46 - 2q-45 - q-44 + 2q-43 + q-42 + 7q-41 - 9q-40 - 9q-39 + 2q-38 + 3q-37 + 35q-36 - 11q-35 - 32q-34 - 23q-33 - 17q-32 + 97q-31 + 31q-30 - 30q-29 - 83q-28 - 125q-27 + 134q-26 + 123q-25 + 84q-24 - 88q-23 - 321q-22 + 39q-21 + 141q-20 + 300q-19 + 88q-18 - 454q-17 - 163q-16 - 49q-15 + 442q-14 + 404q-13 - 378q-12 - 294q-11 - 396q-10 + 375q-9 + 672q-8 - 134q-7 - 233q-6 - 728q-5 + 137q-4 + 778q-3 + 149q-2 - 23q-1 - 955 - 163q + 749q2 + 407q3 + 249q4 - 1085q5 - 478q6 + 630q7 + 643q8 + 543q9 - 1114q10 - 776q11 + 416q12 + 792q13 + 825q14 - 977q15 - 958q16 + 122q17 + 743q18 + 978q19 - 673q20 - 888q21 - 120q22 + 481q23 + 880q24 - 343q25 - 595q26 - 178q27 + 185q28 + 581q29 - 149q30 - 277q31 - 92q32 + 19q33 + 286q34 - 82q35 - 91q36 - 8q37 - 21q38 + 111q39 - 51q40 - 20q41 + 15q42 - 19q43 + 36q44 - 22q45 - 2q46 + 10q47 - 9q48 + 8q49 - 6q50 + q51 + 3q52 - 3q53 + q54 |
5 | - q-70 + 2q-69 + q-68 - 2q-67 - q-66 - 2q-65 - 3q-64 + 7q-63 + 11q-62 - 2q-61 - 8q-60 - 13q-59 - 19q-58 + 8q-57 + 40q-56 + 32q-55 + 2q-54 - 39q-53 - 81q-52 - 50q-51 + 50q-50 + 120q-49 + 120q-48 + 16q-47 - 155q-46 - 234q-45 - 121q-44 + 110q-43 + 328q-42 + 326q-41 + 21q-40 - 362q-39 - 520q-38 - 302q-37 + 239q-36 + 702q-35 + 644q-34 + 44q-33 - 681q-32 - 995q-31 - 529q-30 + 471q-29 + 1218q-28 + 1052q-27 + 13q-26 - 1177q-25 - 1559q-24 - 681q-23 + 874q-22 + 1846q-21 + 1386q-20 - 246q-19 - 1844q-18 - 2055q-17 - 529q-16 + 1536q-15 + 2448q-14 + 1415q-13 - 918q-12 - 2648q-11 - 2186q-10 + 147q-9 + 2475q-8 + 2871q-7 + 740q-6 - 2185q-5 - 3292q-4 - 1573q-3 + 1616q-2 + 3633q-1 + 2397 - 1143q - 3745q2 - 3070q3 + 473q4 + 3906q5 + 3764q6 - 17q7 - 3928q8 - 4339q9 - 634q10 + 4030q11 + 5005q12 + 1130q13 - 3996q14 - 5565q15 - 1853q16 + 3925q17 + 6137q18 + 2501q19 - 3611q20 - 6482q21 - 3295q22 + 3128q23 + 6625q24 + 3910q25 - 2373q26 - 6383q27 - 4432q28 + 1530q29 + 5812q30 + 4597q31 - 655q32 - 4915q33 - 4443q34 - 94q35 + 3871q36 + 3964q37 + 583q38 - 2808q39 - 3231q40 - 832q41 + 1860q42 + 2461q43 + 821q44 - 1161q45 - 1678q46 - 674q47 + 647q48 + 1080q49 + 470q50 - 366q51 - 619q52 - 276q53 + 192q54 + 334q55 + 133q56 - 103q57 - 162q58 - 59q59 + 66q60 + 75q61 + 7q62 - 34q63 - 22q64 - 5q65 + 14q66 + 21q67 - 11q68 - 12q69 + 8q70 - q71 - 4q72 + 8q73 - 3q74 - 5q75 + 6q76 - q77 - 3q78 + 3q79 - q80 |
6 | q-99 - 2q-98 - q-97 + 2q-96 + q-95 + 2q-94 - 2q-93 + 5q-92 - 9q-91 - 11q-90 + 5q-89 + 7q-88 + 15q-87 + 23q-85 - 23q-84 - 48q-83 - 20q-82 - q-81 + 45q-80 + 30q-79 + 115q-78 + 6q-77 - 99q-76 - 126q-75 - 124q-74 - 16q-73 + 25q-72 + 340q-71 + 249q-70 + 64q-69 - 170q-68 - 382q-67 - 411q-66 - 403q-65 + 362q-64 + 616q-63 + 743q-62 + 428q-61 - 141q-60 - 825q-59 - 1500q-58 - 615q-57 + 85q-56 + 1224q-55 + 1705q-54 + 1545q-53 + 205q-52 - 1967q-51 - 2234q-50 - 2254q-49 - 388q-48 + 1653q-47 + 3671q-46 + 3331q-45 + 410q-44 - 1751q-43 - 4522q-42 - 4233q-41 - 2027q-40 + 2795q-39 + 5710q-38 + 4996q-37 + 2923q-36 - 2737q-35 - 6493q-34 - 7734q-33 - 2746q-32 + 3105q-31 + 7129q-30 + 9167q-29 + 4098q-28 - 2946q-27 - 10155q-26 - 9434q-25 - 4696q-24 + 2872q-23 + 11350q-22 + 11713q-21 + 5821q-20 - 5804q-19 - 11647q-18 - 12944q-17 - 6482q-16 + 6619q-15 + 14724q-14 + 14845q-13 + 3498q-12 - 7209q-11 - 16720q-10 - 16031q-9 - 2785q-8 + 11592q-7 + 19786q-6 + 13095q-5 + 1389q-4 - 15065q-3 - 22066q-2 - 12517q-1 + 4894 + 20150q + 19883q2 + 10191q3 - 10547q4 - 24460q5 - 19974q6 - 1873q7 + 18392q8 + 24019q9 + 17092q10 - 6194q11 - 25488q12 - 25518q13 - 7174q14 + 16999q15 + 27575q16 + 22750q17 - 2896q18 - 27007q19 - 31018q20 - 12149q21 + 16027q22 + 31710q23 + 29006q24 + 1142q25 - 28088q26 - 36938q27 - 18752q28 + 12861q29 + 34436q30 + 35758q31 + 8043q32 - 25325q33 - 40357q34 - 26325q35 + 5350q36 + 31754q37 + 39319q38 + 16488q39 - 16824q40 - 37060q41 - 30514q42 - 4323q43 + 22409q44 + 35577q45 + 21506q46 - 5805q47 - 26739q48 - 27467q49 - 10654q50 + 10645q51 + 25210q52 + 19644q53 + 1913q54 - 14467q55 - 18675q56 - 10692q57 + 2283q58 + 13693q59 + 12961q60 + 3925q61 - 5700q62 - 9469q63 - 6779q64 - 877q65 + 5743q66 + 6269q67 + 2553q68 - 1659q69 - 3549q70 - 2896q71 - 996q72 + 1962q73 + 2241q74 + 901q75 - 422q76 - 963q77 - 798q78 - 468q79 + 612q80 + 596q81 + 115q82 - 129q83 - 170q84 - 100q85 - 164q86 + 192q87 + 123q88 - 55q89 - 42q90 - 6q91 + 23q92 - 62q93 + 59q94 + 22q95 - 37q96 - 5q97 + 5q98 + 18q99 - 26q100 + 15q101 + 7q102 - 14q103 + 4q104 + 5q106 - 6q107 + q108 + 3q109 - 3q110 + q111 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 52]] |
Out[2]= | PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[14, 6, 15, 5], X[20, 15, 1, 16], > X[16, 9, 17, 10], X[10, 19, 11, 20], X[18, 11, 19, 12], X[12, 17, 13, 18], > X[2, 8, 3, 7], X[4, 14, 5, 13]] |
In[3]:= | GaussCode[Knot[10, 52]] |
Out[3]= | GaussCode[1, -9, 2, -10, 3, -1, 9, -2, 5, -6, 7, -8, 10, -3, 4, -5, 8, -7, 6, > -4] |
In[4]:= | DTCode[Knot[10, 52]] |
Out[4]= | DTCode[6, 8, 14, 2, 16, 18, 4, 20, 12, 10] |
In[5]:= | br = BR[Knot[10, 52]] |
Out[5]= | BR[4, {1, 1, 1, -2, 1, 1, -2, -2, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 52]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 52]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 52]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 52]][t] |
Out[10]= | 2 7 13 2 3 -15 + -- - -- + -- + 13 t - 7 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 52]][z] |
Out[11]= | 2 4 6 1 + 3 z + 5 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 23], Knot[10, 52]} |
In[13]:= | {KnotDet[Knot[10, 52]], KnotSignature[Knot[10, 52]]} |
Out[13]= | {59, 2} |
In[14]:= | Jones[Knot[10, 52]][q] |
Out[14]= | -4 2 4 7 2 3 4 5 6 -8 - q + -- - -- + - + 10 q - 9 q + 8 q - 6 q + 3 q - q 3 2 q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 52]} |
In[16]:= | A2Invariant[Knot[10, 52]][q] |
Out[16]= | -12 -8 -6 2 2 6 8 10 12 14 16 18 3 - q - q - q + -- + 2 q + 2 q - 2 q + q - q - q + q - q 4 q |
In[17]:= | HOMFLYPT[Knot[10, 52]][a, z] |
Out[17]= | 2 2 4 4 -4 2 2 2 z 2 z 2 2 4 z 3 z 2 4 6 4 - a - 2 a + 6 z - ---- + ---- - 3 a z + 4 z - -- + ---- - a z + z + 4 2 4 2 a a a a 6 z > -- 2 a |
In[18]:= | Kauffman[Knot[10, 52]][a, z] |
Out[18]= | 2 2 -4 2 2 z 7 z 3 2 6 z 4 z 2 2 4 - a + 2 a + --- - --- - 9 a z - 4 a z - 9 z + ---- + ---- - 7 a z + 5 a 4 2 a a a 3 3 3 3 4 4 z 5 z 2 z 24 z 3 3 3 4 3 z 12 z > -- - ---- + ---- + ----- + 24 a z + 8 a z + 19 z + ---- - ----- - 7 5 3 a 6 4 a a a a a 4 5 5 5 6 9 z 2 4 6 z 11 z 28 z 5 3 5 6 8 z > ---- + 13 a z + ---- - ----- - ----- - 16 a z - 5 a z - 20 z + ---- - 2 5 3 a 4 a a a a 6 7 7 8 9 3 z 2 6 7 z 7 z 7 3 7 8 4 z 2 8 z > ---- - 9 a z + ---- + ---- + a z + a z + 6 z + ---- + 2 a z + -- + 2 3 a 2 a a a a 9 > a z |
In[19]:= | {Vassiliev[2][Knot[10, 52]], Vassiliev[3][Knot[10, 52]]} |
Out[19]= | {3, 1} |
In[20]:= | Kh[Knot[10, 52]][q, t] |
Out[20]= | 3 1 1 1 3 1 4 3 4 4 q 6 q + 5 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + --- + 9 5 7 4 5 4 5 3 3 3 3 2 2 q t t q t q t q t q t q t q t q t 3 5 5 2 7 2 7 3 9 3 9 4 > 4 q t + 5 q t + 4 q t + 4 q t + 2 q t + 4 q t + q t + 11 4 13 5 > 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 52], 2][q] |
Out[21]= | -13 2 -11 7 6 9 21 6 28 37 3 52 46 20 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- + -- - 12 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q 2 3 4 5 6 7 8 9 > 70 q + 43 q + 35 q - 73 q + 30 q + 41 q - 60 q + 17 q + 31 q - 10 11 12 13 14 15 16 17 > 37 q + 9 q + 14 q - 15 q + 4 q + 3 q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1052 |
|