© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1049Visit 1049's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1049's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X5,14,6,15 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X13,6,14,7 X7283 |
Gauss Code: | {-1, 10, -2, 1, -3, 9, -10, 2, -5, 7, -6, 8, -9, 3, -4, 5, -7, 6, -8, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 8 14 2 16 18 6 20 10 12 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 3t-3 - 8t-2 + 12t-1 - 13 + 12t - 8t2 + 3t3 |
Conway Polynomial: | 1 + 7z2 + 10z4 + 3z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {59, -6} |
Jones Polynomial: | q-13 - 3q-12 + 5q-11 - 8q-10 + 9q-9 - 10q-8 + 9q-7 - 6q-6 + 5q-5 - 2q-4 + q-3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-40 + q-38 - q-36 - 3q-32 - 2q-30 - q-28 - 2q-26 + 3q-24 + 3q-20 + 2q-18 + 2q-14 - q-12 + q-10 |
HOMFLY-PT Polynomial: | a6 + 4a6z2 + 4a6z4 + a6z6 + 5a8 + 12a8z2 + 9a8z4 + 2a8z6 - 7a10 - 10a10z2 - 3a10z4 + 2a12 + a12z2 |
Kauffman Polynomial: | - a6 + 4a6z2 - 4a6z4 + a6z6 + 3a7z3 - 6a7z5 + 2a7z7 + 5a8 - 13a8z2 + 15a8z4 - 11a8z6 + 3a8z8 - 9a9z + 22a9z3 - 18a9z5 + 3a9z7 + a9z9 + 7a10 - 20a10z2 + 26a10z4 - 19a10z6 + 6a10z8 - 10a11z + 24a11z3 - 19a11z5 + 5a11z7 + a11z9 + 2a12 - 2a12z2 + 2a12z4 - 3a12z6 + 3a12z8 + a13z3 - 4a13z5 + 4a13z7 - 4a14z4 + 4a14z6 + a15z - 4a15z3 + 3a15z5 - a16z2 + a16z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {7, -16} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-6 is the signature of 1049. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-36 - 3q-35 + q-34 + 7q-33 - 13q-32 + 4q-31 + 20q-30 - 32q-29 + 7q-28 + 41q-27 - 56q-26 + 6q-25 + 63q-24 - 69q-23 - 3q-22 + 72q-21 - 62q-20 - 14q-19 + 65q-18 - 41q-17 - 20q-16 + 46q-15 - 18q-14 - 19q-13 + 24q-12 - 3q-11 - 10q-10 + 7q-9 + q-8 - 2q-7 + q-6 |
3 | q-69 - 3q-68 + q-67 + 3q-66 + 2q-65 - 8q-64 - 2q-63 + 13q-62 + q-61 - 18q-60 - q-59 + 30q-58 - 7q-57 - 43q-56 + 11q-55 + 72q-54 - 25q-53 - 100q-52 + 23q-51 + 150q-50 - 30q-49 - 183q-48 + 10q-47 + 228q-46 + 3q-45 - 246q-44 - 33q-43 + 259q-42 + 57q-41 - 250q-40 - 85q-39 + 232q-38 + 111q-37 - 209q-36 - 125q-35 + 165q-34 + 150q-33 - 138q-32 - 146q-31 + 83q-30 + 158q-29 - 55q-28 - 133q-27 + 6q-26 + 121q-25 + 11q-24 - 83q-23 - 35q-22 + 62q-21 + 29q-20 - 28q-19 - 30q-18 + 16q-17 + 17q-16 - 3q-15 - 10q-14 + 2q-13 + 3q-12 + q-11 - 2q-10 + q-9 |
4 | q-112 - 3q-111 + q-110 + 3q-109 - 2q-108 + 7q-107 - 14q-106 + 2q-105 + 7q-104 - 8q-103 + 31q-102 - 34q-101 + 3q-100 + 5q-99 - 35q-98 + 76q-97 - 42q-96 + 31q-95 - 8q-94 - 125q-93 + 105q-92 - 27q-91 + 151q-90 + 20q-89 - 304q-88 + 22q-87 - 44q-86 + 407q-85 + 195q-84 - 503q-83 - 223q-82 - 210q-81 + 707q-80 + 553q-79 - 569q-78 - 516q-77 - 548q-76 + 864q-75 + 937q-74 - 437q-73 - 658q-72 - 909q-71 + 802q-70 + 1146q-69 - 216q-68 - 589q-67 - 1120q-66 + 604q-65 + 1125q-64 - 12q-63 - 385q-62 - 1163q-61 + 347q-60 + 957q-59 + 165q-58 - 123q-57 - 1086q-56 + 57q-55 + 683q-54 + 312q-53 + 178q-52 - 892q-51 - 215q-50 + 322q-49 + 352q-48 + 449q-47 - 565q-46 - 346q-45 - 41q-44 + 219q-43 + 558q-42 - 195q-41 - 266q-40 - 246q-39 - 3q-38 + 439q-37 + 50q-36 - 75q-35 - 229q-34 - 137q-33 + 212q-32 + 92q-31 + 50q-30 - 100q-29 - 121q-28 + 52q-27 + 36q-26 + 55q-25 - 15q-24 - 50q-23 + 6q-22 + 19q-20 + 3q-19 - 11q-18 + 2q-17 - 2q-16 + 3q-15 + q-14 - 2q-13 + q-12 |
5 | q-165 - 3q-164 + q-163 + 3q-162 - 2q-161 + 3q-160 + q-159 - 10q-158 - 4q-157 + 9q-156 + 2q-155 + 13q-154 + 9q-153 - 24q-152 - 30q-151 - 6q-150 + 18q-149 + 50q-148 + 51q-147 - 17q-146 - 95q-145 - 100q-144 - 12q-143 + 124q-142 + 196q-141 + 105q-140 - 151q-139 - 353q-138 - 245q-137 + 127q-136 + 512q-135 + 535q-134 - 3q-133 - 739q-132 - 919q-131 - 256q-130 + 874q-129 + 1485q-128 + 736q-127 - 967q-126 - 2102q-125 - 1446q-124 + 813q-123 + 2807q-122 + 2381q-121 - 493q-120 - 3336q-119 - 3461q-118 - 202q-117 + 3790q-116 + 4554q-115 + 993q-114 - 3845q-113 - 5513q-112 - 2038q-111 + 3736q-110 + 6252q-109 + 2924q-108 - 3288q-107 - 6656q-106 - 3794q-105 + 2788q-104 + 6783q-103 + 4356q-102 - 2184q-101 - 6647q-100 - 4761q-99 + 1666q-98 + 6344q-97 + 4912q-96 - 1145q-95 - 5942q-94 - 4953q-93 + 696q-92 + 5453q-91 + 4898q-90 - 246q-89 - 4888q-88 - 4766q-87 - 263q-86 + 4245q-85 + 4614q-84 + 726q-83 - 3476q-82 - 4281q-81 - 1305q-80 + 2621q-79 + 3936q-78 + 1673q-77 - 1679q-76 - 3268q-75 - 2083q-74 + 735q-73 + 2624q-72 + 2105q-71 + 111q-70 - 1669q-69 - 2058q-68 - 792q-67 + 881q-66 + 1603q-65 + 1184q-64 + 5q-63 - 1129q-62 - 1290q-61 - 541q-60 + 444q-59 + 1110q-58 + 967q-57 + 44q-56 - 759q-55 - 962q-54 - 515q-53 + 332q-52 + 884q-51 + 648q-50 + 13q-49 - 541q-48 - 682q-47 - 272q-46 + 313q-45 + 505q-44 + 336q-43 - 45q-42 - 338q-41 - 318q-40 - 51q-39 + 154q-38 + 220q-37 + 111q-36 - 62q-35 - 128q-34 - 75q-33 - 9q-32 + 60q-31 + 59q-30 + 9q-29 - 26q-28 - 15q-27 - 16q-26 + 3q-25 + 16q-24 + 4q-23 - 5q-22 + q-21 - 2q-20 - 2q-19 + 3q-18 + q-17 - 2q-16 + q-15 |
6 | q-228 - 3q-227 + q-226 + 3q-225 - 2q-224 + 3q-223 - 3q-222 + 5q-221 - 16q-220 - 2q-219 + 19q-218 - 5q-217 + 17q-216 - 3q-215 + 10q-214 - 62q-213 - 24q-212 + 48q-211 + 2q-210 + 68q-209 + 30q-208 + 37q-207 - 184q-206 - 122q-205 + 49q-204 + 6q-203 + 211q-202 + 195q-201 + 171q-200 - 396q-199 - 408q-198 - 125q-197 - 95q-196 + 490q-195 + 695q-194 + 648q-193 - 604q-192 - 1033q-191 - 813q-190 - 626q-189 + 854q-188 + 1869q-187 + 2030q-186 - 390q-185 - 2075q-184 - 2655q-183 - 2451q-182 + 812q-181 + 4009q-180 + 5371q-179 + 1467q-178 - 2976q-177 - 6233q-176 - 7100q-175 - 1231q-174 + 6459q-173 + 11498q-172 + 6957q-171 - 1703q-170 - 10696q-169 - 15495q-168 - 7621q-167 + 6667q-166 + 19110q-165 + 16862q-164 + 4383q-163 - 12863q-162 - 25605q-161 - 18758q-160 + 1736q-159 + 24224q-158 + 28304q-157 + 15236q-156 - 9664q-155 - 32690q-154 - 30942q-153 - 7840q-152 + 23614q-151 + 36104q-150 + 26646q-149 - 1981q-148 - 33663q-147 - 38986q-146 - 17672q-145 + 18451q-144 + 37709q-143 + 33877q-142 + 5916q-141 - 30043q-140 - 41087q-139 - 23783q-138 + 12603q-137 + 35014q-136 + 35995q-135 + 10985q-134 - 25252q-133 - 39398q-132 - 26057q-131 + 8172q-130 + 30977q-129 + 35282q-128 + 13767q-127 - 20636q-126 - 36359q-125 - 26760q-124 + 4206q-123 + 26376q-122 + 33658q-121 + 16299q-120 - 15125q-119 - 32251q-118 - 27214q-117 - 894q-116 + 20112q-115 + 30886q-114 + 19197q-113 - 7635q-112 - 25864q-111 - 26535q-110 - 6958q-109 + 11417q-108 + 25452q-107 + 20875q-106 + 992q-105 - 16559q-104 - 22733q-103 - 11654q-102 + 1555q-101 + 16640q-100 + 18862q-99 + 7818q-98 - 5916q-97 - 14969q-96 - 12041q-95 - 6117q-94 + 6273q-93 + 12321q-92 + 9640q-91 + 2308q-90 - 5412q-89 - 7378q-88 - 8292q-87 - 1567q-86 + 3853q-85 + 6038q-84 + 4841q-83 + 1534q-82 - 741q-81 - 5031q-80 - 3765q-79 - 1923q-78 + 569q-77 + 2287q-76 + 3080q-75 + 3247q-74 - 319q-73 - 1479q-72 - 2724q-71 - 2337q-70 - 1169q-69 + 931q-68 + 2971q-67 + 1823q-66 + 1146q-65 - 709q-64 - 1764q-63 - 2196q-62 - 1033q-61 + 883q-60 + 1172q-59 + 1596q-58 + 726q-57 - 192q-56 - 1213q-55 - 1139q-54 - 289q-53 + 56q-52 + 722q-51 + 679q-50 + 426q-49 - 242q-48 - 451q-47 - 282q-46 - 255q-45 + 92q-44 + 215q-43 + 273q-42 + 31q-41 - 70q-40 - 53q-39 - 124q-38 - 35q-37 + 18q-36 + 80q-35 + 16q-34 - 3q-33 + 11q-32 - 26q-31 - 14q-30 - 6q-29 + 18q-28 + q-27 - 4q-26 + 7q-25 - 3q-24 - 2q-23 - 2q-22 + 3q-21 + q-20 - 2q-19 + q-18 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 49]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[15, 20, 16, 1], > X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11], X[19, 12, 20, 13], > X[13, 6, 14, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 49]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -5, 7, -6, 8, -9, 3, -4, 5, -7, 6, -8, > 4] |
In[4]:= | DTCode[Knot[10, 49]] |
Out[4]= | DTCode[4, 8, 14, 2, 16, 18, 6, 20, 10, 12] |
In[5]:= | br = BR[Knot[10, 49]] |
Out[5]= | BR[4, {-1, -1, -1, -1, 2, -1, -3, -2, -2, -2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 49]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 49]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 49]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 3, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 49]][t] |
Out[10]= | 3 8 12 2 3 -13 + -- - -- + -- + 12 t - 8 t + 3 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 49]][z] |
Out[11]= | 2 4 6 1 + 7 z + 10 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 49]} |
In[13]:= | {KnotDet[Knot[10, 49]], KnotSignature[Knot[10, 49]]} |
Out[13]= | {59, -6} |
In[14]:= | Jones[Knot[10, 49]][q] |
Out[14]= | -13 3 5 8 9 10 9 6 5 2 -3 q - --- + --- - --- + -- - -- + -- - -- + -- - -- + q 12 11 10 9 8 7 6 5 4 q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 49]} |
In[16]:= | A2Invariant[Knot[10, 49]][q] |
Out[16]= | -40 -38 -36 3 2 -28 2 3 3 2 2 -12 q + q - q - --- - --- - q - --- + --- + --- + --- + --- - q + 32 30 26 24 20 18 14 q q q q q q q -10 > q |
In[17]:= | HOMFLYPT[Knot[10, 49]][a, z] |
Out[17]= | 6 8 10 12 6 2 8 2 10 2 12 2 6 4 a + 5 a - 7 a + 2 a + 4 a z + 12 a z - 10 a z + a z + 4 a z + 8 4 10 4 6 6 8 6 > 9 a z - 3 a z + a z + 2 a z |
In[18]:= | Kauffman[Knot[10, 49]][a, z] |
Out[18]= | 6 8 10 12 9 11 15 6 2 8 2 -a + 5 a + 7 a + 2 a - 9 a z - 10 a z + a z + 4 a z - 13 a z - 10 2 12 2 16 2 7 3 9 3 11 3 13 3 > 20 a z - 2 a z - a z + 3 a z + 22 a z + 24 a z + a z - 15 3 6 4 8 4 10 4 12 4 14 4 16 4 > 4 a z - 4 a z + 15 a z + 26 a z + 2 a z - 4 a z + a z - 7 5 9 5 11 5 13 5 15 5 6 6 8 6 > 6 a z - 18 a z - 19 a z - 4 a z + 3 a z + a z - 11 a z - 10 6 12 6 14 6 7 7 9 7 11 7 13 7 > 19 a z - 3 a z + 4 a z + 2 a z + 3 a z + 5 a z + 4 a z + 8 8 10 8 12 8 9 9 11 9 > 3 a z + 6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 49]], Vassiliev[3][Knot[10, 49]]} |
Out[19]= | {7, -16} |
In[20]:= | Kh[Knot[10, 49]][q, t] |
Out[20]= | -7 -5 1 2 1 3 2 5 3 q + q + ------- + ------ + ------ + ------ + ------ + ------ + ------ + 27 10 25 9 23 9 23 8 21 8 21 7 19 7 q t q t q t q t q t q t q t 4 5 6 4 3 6 3 3 > ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 19 6 17 6 17 5 15 5 15 4 13 4 13 3 11 3 q t q t q t q t q t q t q t q t 2 3 2 > ------ + ----- + ---- 11 2 9 2 7 q t q t q t |
In[21]:= | ColouredJones[Knot[10, 49], 2][q] |
Out[21]= | -36 3 -34 7 13 4 20 32 7 41 56 6 63 q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + --- + --- - 35 33 32 31 30 29 28 27 26 25 24 q q q q q q q q q q q 69 3 72 62 14 65 41 20 46 18 19 24 > --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 23 22 21 20 19 18 17 16 15 14 13 12 q q q q q q q q q q q q 3 10 7 -8 2 -6 > --- - --- + -- + q - -- + q 11 10 9 7 q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1049 |
|