© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1050Visit 1050's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1050's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X8493 X2837 X16,10,17,9 X14,5,15,6 X4,15,5,16 X20,14,1,13 X10,20,11,19 X18,12,19,11 X12,18,13,17 |
Gauss Code: | {1, -3, 2, -6, 5, -1, 3, -2, 4, -8, 9, -10, 7, -5, 6, -4, 10, -9, 8, -7} |
DT (Dowker-Thistlethwaite) Code: | 6 8 14 2 16 18 20 4 12 10 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 7t-2 - 11t-1 + 13 - 11t + 7t2 - 2t3 |
Conway Polynomial: | 1 - z2 - 5z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {53, 4} |
Jones Polynomial: | 1 - 2q + 5q2 - 6q3 + 8q4 - 9q5 + 8q6 - 7q7 + 4q8 - 2q9 + q10 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | 1 + q4 + 2q6 + 3q10 - q12 - q16 - 3q18 - 2q22 + q24 + q26 + q30 |
HOMFLY-PT Polynomial: | 2a-8 + 3a-8z2 + a-8z4 - 4a-6 - 6a-6z2 - 4a-6z4 - a-6z6 + a-4 - a-4z2 - 3a-4z4 - a-4z6 + 2a-2 + 3a-2z2 + a-2z4 |
Kauffman Polynomial: | - 2a-12z2 + a-12z4 - 3a-11z3 + 2a-11z5 + 3a-10z2 - 5a-10z4 + 3a-10z6 - 6a-9z + 16a-9z3 - 11a-9z5 + 4a-9z7 + 2a-8 - 3a-8z2 + 9a-8z4 - 7a-8z6 + 3a-8z8 - 10a-7z + 22a-7z3 - 15a-7z5 + 3a-7z7 + a-7z9 + 4a-6 - 13a-6z2 + 18a-6z4 - 15a-6z6 + 5a-6z8 - 3a-5z + 6a-5z3 - 8a-5z5 + a-5z7 + a-5z9 + a-4 - a-4z4 - 4a-4z6 + 2a-4z8 + a-3z + 3a-3z3 - 6a-3z5 + 2a-3z7 - 2a-2 + 5a-2z2 - 4a-2z4 + a-2z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-1, -5} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 1050. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-2 - 2q-1 + 7q - 8q2 - 5q3 + 22q4 - 14q5 - 19q6 + 39q7 - 12q8 - 39q9 + 50q10 - 2q11 - 54q12 + 51q13 + 9q14 - 57q15 + 41q16 + 14q17 - 43q18 + 24q19 + 11q20 - 22q21 + 9q22 + 5q23 - 8q24 + 3q25 + q26 - 2q27 + q28 |
3 | q-6 - 2q-5 + 2q-3 + 4q-2 - 7q-1 - 6 + 9q + 17q2 - 15q3 - 26q4 + 9q5 + 51q6 - 9q7 - 61q8 - 17q9 + 85q10 + 34q11 - 84q12 - 74q13 + 90q14 + 96q15 - 68q16 - 134q17 + 55q18 + 153q19 - 25q20 - 174q21 - q22 + 186q23 + 26q24 - 188q25 - 53q26 + 188q27 + 67q28 - 167q29 - 85q30 + 147q31 + 84q32 - 109q33 - 87q34 + 82q35 + 67q36 - 44q37 - 56q38 + 24q39 + 37q40 - 10q41 - 20q42 + 2q43 + 12q44 - 3q45 - 3q46 + 3q48 - 3q49 + q50 + q52 - 2q53 + q54 |
4 | q-12 - 2q-11 + 2q-9 - q-8 + 5q-7 - 9q-6 - 2q-5 + 9q-4 - q-3 + 18q-2 - 29q-1 - 16 + 19q + 9q2 + 62q3 - 56q4 - 60q5 - 3q6 + 10q7 + 169q8 - 35q9 - 106q10 - 93q11 - 77q12 + 286q13 + 80q14 - 44q15 - 184q16 - 298q17 + 279q18 + 204q19 + 174q20 - 133q21 - 543q22 + 92q23 + 189q24 + 448q25 + 94q26 - 671q27 - 172q28 + 14q29 + 646q30 + 393q31 - 659q32 - 402q33 - 219q34 + 743q35 + 655q36 - 574q37 - 562q38 - 425q39 + 759q40 + 840q41 - 442q42 - 645q43 - 591q44 + 679q45 + 925q46 - 246q47 - 600q48 - 697q49 + 460q50 + 857q51 - 13q52 - 396q53 - 674q54 + 167q55 + 610q56 + 138q57 - 117q58 - 487q59 - 46q60 + 295q61 + 137q62 + 65q63 - 243q64 - 90q65 + 81q66 + 52q67 + 95q68 - 82q69 - 46q70 + 10q71 - 2q72 + 54q73 - 24q74 - 11q75 + 3q76 - 11q77 + 21q78 - 8q79 - 2q80 + 3q81 - 6q82 + 6q83 - 2q84 + q86 - 2q87 + q88 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 50]] |
Out[2]= | PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[2, 8, 3, 7], X[16, 10, 17, 9], > X[14, 5, 15, 6], X[4, 15, 5, 16], X[20, 14, 1, 13], X[10, 20, 11, 19], > X[18, 12, 19, 11], X[12, 18, 13, 17]] |
In[3]:= | GaussCode[Knot[10, 50]] |
Out[3]= | GaussCode[1, -3, 2, -6, 5, -1, 3, -2, 4, -8, 9, -10, 7, -5, 6, -4, 10, -9, 8, > -7] |
In[4]:= | DTCode[Knot[10, 50]] |
Out[4]= | DTCode[6, 8, 14, 2, 16, 18, 20, 4, 12, 10] |
In[5]:= | br = BR[Knot[10, 50]] |
Out[5]= | BR[4, {1, 1, 2, -1, 2, 2, -3, 2, 2, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 50]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 50]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 50]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 50]][t] |
Out[10]= | 2 7 11 2 3 13 - -- + -- - -- - 11 t + 7 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 50]][z] |
Out[11]= | 2 4 6 1 - z - 5 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 50]} |
In[13]:= | {KnotDet[Knot[10, 50]], KnotSignature[Knot[10, 50]]} |
Out[13]= | {53, 4} |
In[14]:= | Jones[Knot[10, 50]][q] |
Out[14]= | 2 3 4 5 6 7 8 9 10 1 - 2 q + 5 q - 6 q + 8 q - 9 q + 8 q - 7 q + 4 q - 2 q + q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 50]} |
In[16]:= | A2Invariant[Knot[10, 50]][q] |
Out[16]= | 4 6 10 12 16 18 22 24 26 30 1 + q + 2 q + 3 q - q - q - 3 q - 2 q + q + q + q |
In[17]:= | HOMFLYPT[Knot[10, 50]][a, z] |
Out[17]= | 2 2 2 2 4 4 4 4 6 6 2 4 -4 2 3 z 6 z z 3 z z 4 z 3 z z z z -- - -- + a + -- + ---- - ---- - -- + ---- + -- - ---- - ---- + -- - -- - -- 8 6 2 8 6 4 2 8 6 4 2 6 4 a a a a a a a a a a a a a |
In[18]:= | Kauffman[Knot[10, 50]][a, z] |
Out[18]= | 2 2 2 2 2 4 -4 2 6 z 10 z 3 z z 2 z 3 z 3 z 13 z -- + -- + a - -- - --- - ---- - --- + -- - ---- + ---- - ---- - ----- + 8 6 2 9 7 5 3 12 10 8 6 a a a a a a a a a a a 2 3 3 3 3 3 4 4 4 4 5 z 3 z 16 z 22 z 6 z 3 z z 5 z 9 z 18 z > ---- - ---- + ----- + ----- + ---- + ---- + --- - ---- + ---- + ----- - 2 11 9 7 5 3 12 10 8 6 a a a a a a a a a a 4 4 5 5 5 5 5 6 6 6 z 4 z 2 z 11 z 15 z 8 z 6 z 3 z 7 z 15 z > -- - ---- + ---- - ----- - ----- - ---- - ---- + ---- - ---- - ----- - 4 2 11 9 7 5 3 10 8 6 a a a a a a a a a a 6 6 7 7 7 7 8 8 8 9 9 4 z z 4 z 3 z z 2 z 3 z 5 z 2 z z z > ---- + -- + ---- + ---- + -- + ---- + ---- + ---- + ---- + -- + -- 4 2 9 7 5 3 8 6 4 7 5 a a a a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 50]], Vassiliev[3][Knot[10, 50]]} |
Out[19]= | {-1, -5} |
In[20]:= | Kh[Knot[10, 50]][q, t] |
Out[20]= | 3 3 5 1 q q 5 7 7 2 9 2 9 3 4 q + 2 q + ---- + - + -- + 3 q t + 3 q t + 5 q t + 3 q t + 4 q t + 2 t t q t 11 3 11 4 13 4 13 5 15 5 15 6 17 6 > 5 q t + 4 q t + 4 q t + 3 q t + 4 q t + q t + 3 q t + 17 7 19 7 21 8 > q t + q t + q t |
In[21]:= | ColouredJones[Knot[10, 50], 2][q] |
Out[21]= | -2 2 2 3 4 5 6 7 8 9 q - - + 7 q - 8 q - 5 q + 22 q - 14 q - 19 q + 39 q - 12 q - 39 q + q 10 11 12 13 14 15 16 17 > 50 q - 2 q - 54 q + 51 q + 9 q - 57 q + 41 q + 14 q - 18 19 20 21 22 23 24 25 26 > 43 q + 24 q + 11 q - 22 q + 9 q + 5 q - 8 q + 3 q + q - 27 28 > 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1050 |
|