© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.44
1044
10.46
1046
    10.45
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 1045   

Visit 1045's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 1045's page at Knotilus!

Acknowledgement

10.45
KnotPlot

PD Presentation: X4251 X12,6,13,5 X10,3,11,4 X2,11,3,12 X20,14,1,13 X14,7,15,8 X6,19,7,20 X18,15,19,16 X16,10,17,9 X8,18,9,17

Gauss Code: {1, -4, 3, -1, 2, -7, 6, -10, 9, -3, 4, -2, 5, -6, 8, -9, 10, -8, 7, -5}

DT (Dowker-Thistlethwaite) Code: 4 10 12 14 16 2 20 18 8 6

Minimum Braid Representative:


Length is 10, width is 5
Braid index is 5

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
FullyAmphicheiral 2 3 2 / NotAvailable 1

Alexander Polynomial: - t-3 + 7t-2 - 21t-1 + 31 - 21t + 7t2 - t3

Conway Polynomial: 1 - 2z2 + z4 - z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {89, 0}

Jones Polynomial: - q-5 + 4q-4 - 7q-3 + 11q-2 - 14q-1 + 15 - 14q + 11q2 - 7q3 + 4q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-16 + q-14 + 2q-12 - 2q-10 + 3q-8 - 2q-4 + 2q-2 - 3 + 2q2 - 2q4 + 3q8 - 2q10 + 2q12 + q14 - q16

HOMFLY-PT Polynomial: - a-4z2 + 2a-2 + 3a-2z2 + 2a-2z4 - 3 - 6z2 - 3z4 - z6 + 2a2 + 3a2z2 + 2a2z4 - a4z2

Kauffman Polynomial: - a-5z3 + a-5z5 + 3a-4z2 - 7a-4z4 + 4a-4z6 - a-3z + 5a-3z3 - 10a-3z5 + 6a-3z7 - 2a-2 + 12a-2z2 - 17a-2z4 + 3a-2z6 + 4a-2z8 - 5a-1z + 21a-1z3 - 31a-1z5 + 14a-1z7 + a-1z9 - 3 + 18z2 - 20z4 - 2z6 + 8z8 - 5az + 21az3 - 31az5 + 14az7 + az9 - 2a2 + 12a2z2 - 17a2z4 + 3a2z6 + 4a2z8 - a3z + 5a3z3 - 10a3z5 + 6a3z7 + 3a4z2 - 7a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1045. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11          1
j = 9         3 
j = 7        41 
j = 5       73  
j = 3      74   
j = 1     87    
j = -1    78     
j = -3   47      
j = -5  37       
j = -7 14        
j = -9 3         
j = -111          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-15 - 4q-14 + 2q-13 + 13q-12 - 24q-11 + 51q-9 - 61q-8 - 18q-7 + 116q-6 - 98q-5 - 55q-4 + 180q-3 - 112q-2 - 94q-1 + 207 - 94q - 112q2 + 180q3 - 55q4 - 98q5 + 116q6 - 18q7 - 61q8 + 51q9 - 24q11 + 13q12 + 2q13 - 4q14 + q15
3 - q-30 + 4q-29 - 2q-28 - 8q-27 + 23q-25 + 6q-24 - 53q-23 - 16q-22 + 90q-21 + 54q-20 - 152q-19 - 110q-18 + 213q-17 + 214q-16 - 288q-15 - 341q-14 + 333q-13 + 518q-12 - 369q-11 - 699q-10 + 359q-9 + 893q-8 - 323q-7 - 1063q-6 + 254q-5 + 1197q-4 - 160q-3 - 1285q-2 + 55q-1 + 1315 + 55q - 1285q2 - 160q3 + 1197q4 + 254q5 - 1063q6 - 323q7 + 893q8 + 359q9 - 699q10 - 369q11 + 518q12 + 333q13 - 341q14 - 288q15 + 214q16 + 213q17 - 110q18 - 152q19 + 54q20 + 90q21 - 16q22 - 53q23 + 6q24 + 23q25 - 8q27 - 2q28 + 4q29 - q30
4 q-50 - 4q-49 + 2q-48 + 8q-47 - 5q-46 + q-45 - 29q-44 + 12q-43 + 54q-42 - 9q-41 - 146q-39 + 8q-38 + 212q-37 + 61q-36 + 25q-35 - 496q-34 - 136q-33 + 524q-32 + 400q-31 + 261q-30 - 1204q-29 - 729q-28 + 822q-27 + 1213q-26 + 1108q-25 - 2114q-24 - 2056q-23 + 620q-22 + 2366q-21 + 2921q-20 - 2686q-19 - 3976q-18 - 516q-17 + 3306q-16 + 5506q-15 - 2414q-14 - 5838q-13 - 2466q-12 + 3503q-11 + 8113q-10 - 1310q-9 - 6976q-8 - 4591q-7 + 2878q-6 + 9950q-5 + 200q-4 - 7103q-3 - 6257q-2 + 1686q-1 + 10601 + 1686q - 6257q2 - 7103q3 + 200q4 + 9950q5 + 2878q6 - 4591q7 - 6976q8 - 1310q9 + 8113q10 + 3503q11 - 2466q12 - 5838q13 - 2414q14 + 5506q15 + 3306q16 - 516q17 - 3976q18 - 2686q19 + 2921q20 + 2366q21 + 620q22 - 2056q23 - 2114q24 + 1108q25 + 1213q26 + 822q27 - 729q28 - 1204q29 + 261q30 + 400q31 + 524q32 - 136q33 - 496q34 + 25q35 + 61q36 + 212q37 + 8q38 - 146q39 - 9q41 + 54q42 + 12q43 - 29q44 + q45 - 5q46 + 8q47 + 2q48 - 4q49 + q50
5 - q-75 + 4q-74 - 2q-73 - 8q-72 + 5q-71 + 4q-70 + 5q-69 + 11q-68 - 13q-67 - 45q-66 - 5q-65 + 46q-64 + 64q-63 + 48q-62 - 67q-61 - 184q-60 - 129q-59 + 133q-58 + 364q-57 + 289q-56 - 140q-55 - 656q-54 - 702q-53 + 81q-52 + 1151q-51 + 1355q-50 + 189q-49 - 1642q-48 - 2538q-47 - 970q-46 + 2272q-45 + 4181q-44 + 2389q-43 - 2460q-42 - 6416q-41 - 4919q-40 + 2157q-39 + 8930q-38 + 8532q-37 - 562q-36 - 11492q-35 - 13432q-34 - 2348q-33 + 13380q-32 + 19185q-31 + 7200q-30 - 14278q-29 - 25476q-28 - 13511q-27 + 13493q-26 + 31474q-25 + 21371q-24 - 11034q-23 - 36775q-22 - 29779q-21 + 6832q-20 + 40644q-19 + 38375q-18 - 1307q-17 - 43017q-16 - 46293q-15 - 5035q-14 + 43723q-13 + 53105q-12 + 11695q-11 - 42967q-10 - 58510q-9 - 18183q-8 + 41006q-7 + 62330q-6 + 24174q-5 - 37984q-4 - 64621q-3 - 29521q-2 + 34135q-1 + 65381 + 34135q - 29521q2 - 64621q3 - 37984q4 + 24174q5 + 62330q6 + 41006q7 - 18183q8 - 58510q9 - 42967q10 + 11695q11 + 53105q12 + 43723q13 - 5035q14 - 46293q15 - 43017q16 - 1307q17 + 38375q18 + 40644q19 + 6832q20 - 29779q21 - 36775q22 - 11034q23 + 21371q24 + 31474q25 + 13493q26 - 13511q27 - 25476q28 - 14278q29 + 7200q30 + 19185q31 + 13380q32 - 2348q33 - 13432q34 - 11492q35 - 562q36 + 8532q37 + 8930q38 + 2157q39 - 4919q40 - 6416q41 - 2460q42 + 2389q43 + 4181q44 + 2272q45 - 970q46 - 2538q47 - 1642q48 + 189q49 + 1355q50 + 1151q51 + 81q52 - 702q53 - 656q54 - 140q55 + 289q56 + 364q57 + 133q58 - 129q59 - 184q60 - 67q61 + 48q62 + 64q63 + 46q64 - 5q65 - 45q66 - 13q67 + 11q68 + 5q69 + 4q70 + 5q71 - 8q72 - 2q73 + 4q74 - q75
6 q-105 - 4q-104 + 2q-103 + 8q-102 - 5q-101 - 4q-100 - 10q-99 + 13q-98 - 10q-97 + 4q-96 + 59q-95 - 25q-94 - 40q-93 - 74q-92 + 32q-91 - 3q-90 + 57q-89 + 267q-88 - 34q-87 - 197q-86 - 401q-85 - 45q-84 - 32q-83 + 348q-82 + 1079q-81 + 263q-80 - 525q-79 - 1592q-78 - 911q-77 - 621q-76 + 1081q-75 + 3656q-74 + 2306q-73 - 256q-72 - 4396q-71 - 4571q-70 - 4277q-69 + 1134q-68 + 9435q-67 + 9801q-66 + 4592q-65 - 7390q-64 - 13521q-63 - 17049q-62 - 5540q-61 + 16413q-60 + 27073q-59 + 23108q-58 - 1876q-57 - 25158q-56 - 45479q-55 - 31763q-54 + 12557q-53 + 50988q-52 + 64242q-51 + 29277q-50 - 23924q-49 - 85653q-48 - 88822q-47 - 23602q-46 + 62366q-45 + 122862q-44 + 99398q-43 + 15272q-42 - 114745q-41 - 169845q-40 - 106356q-39 + 33185q-38 + 172614q-37 + 199414q-36 + 106232q-35 - 102570q-34 - 245085q-33 - 223592q-32 - 49355q-31 + 181924q-30 + 296662q-29 + 233403q-28 - 37527q-27 - 281967q-26 - 340037q-25 - 167562q-24 + 140188q-23 + 358168q-22 + 360008q-21 + 62158q-20 - 270025q-19 - 422822q-18 - 285963q-17 + 64472q-16 + 373309q-15 + 454649q-14 + 164639q-13 - 223339q-12 - 461148q-11 - 377316q-10 - 18757q-9 + 352647q-8 + 507449q-7 + 248392q-6 - 161820q-5 - 462289q-4 - 434603q-3 - 94324q-2 + 309843q-1 + 523615 + 309843q - 94324q2 - 434603q3 - 462289q4 - 161820q5 + 248392q6 + 507449q7 + 352647q8 - 18757q9 - 377316q10 - 461148q11 - 223339q12 + 164639q13 + 454649q14 + 373309q15 + 64472q16 - 285963q17 - 422822q18 - 270025q19 + 62158q20 + 360008q21 + 358168q22 + 140188q23 - 167562q24 - 340037q25 - 281967q26 - 37527q27 + 233403q28 + 296662q29 + 181924q30 - 49355q31 - 223592q32 - 245085q33 - 102570q34 + 106232q35 + 199414q36 + 172614q37 + 33185q38 - 106356q39 - 169845q40 - 114745q41 + 15272q42 + 99398q43 + 122862q44 + 62366q45 - 23602q46 - 88822q47 - 85653q48 - 23924q49 + 29277q50 + 64242q51 + 50988q52 + 12557q53 - 31763q54 - 45479q55 - 25158q56 - 1876q57 + 23108q58 + 27073q59 + 16413q60 - 5540q61 - 17049q62 - 13521q63 - 7390q64 + 4592q65 + 9801q66 + 9435q67 + 1134q68 - 4277q69 - 4571q70 - 4396q71 - 256q72 + 2306q73 + 3656q74 + 1081q75 - 621q76 - 911q77 - 1592q78 - 525q79 + 263q80 + 1079q81 + 348q82 - 32q83 - 45q84 - 401q85 - 197q86 - 34q87 + 267q88 + 57q89 - 3q90 + 32q91 - 74q92 - 40q93 - 25q94 + 59q95 + 4q96 - 10q97 + 13q98 - 10q99 - 4q100 - 5q101 + 8q102 + 2q103 - 4q104 + q105
7 - q-140 + 4q-139 - 2q-138 - 8q-137 + 5q-136 + 4q-135 + 10q-134 - 8q-133 - 14q-132 + 19q-131 - 18q-130 - 29q-129 + 19q-128 + 34q-127 + 70q-126 - 8q-125 - 95q-124 - q-123 - 100q-122 - 96q-121 + 90q-120 + 166q-119 + 386q-118 + 123q-117 - 322q-116 - 317q-115 - 631q-114 - 467q-113 + 266q-112 + 762q-111 + 1670q-110 + 1208q-109 - 463q-108 - 1515q-107 - 3107q-106 - 2772q-105 - 291q-104 + 2314q-103 + 6161q-102 + 6463q-101 + 2175q-100 - 3301q-99 - 10657q-98 - 12818q-97 - 7278q-96 + 2220q-95 + 16744q-94 + 24415q-93 + 18496q-92 + 2513q-91 - 23614q-90 - 41366q-89 - 38652q-88 - 16667q-87 + 26513q-86 + 64437q-85 + 73119q-84 + 46302q-83 - 20551q-82 - 89764q-81 - 122265q-80 - 99742q-79 - 7071q-78 + 109229q-77 + 187356q-76 + 184499q-75 + 67310q-74 - 109616q-73 - 258467q-72 - 303242q-71 - 176407q-70 + 71385q-69 + 322592q-68 + 452773q-67 + 342359q-66 + 25746q-65 - 355028q-64 - 618567q-63 - 569164q-62 - 200388q-61 + 330574q-60 + 776717q-59 + 845393q-58 + 462550q-57 - 221392q-56 - 896607q-55 - 1150732q-54 - 808577q-53 + 11346q-52 + 945398q-51 + 1450627q-50 + 1221252q-49 + 306842q-48 - 897550q-47 - 1711298q-46 - 1669310q-45 - 719003q-44 + 739059q-43 + 1896713q-42 + 2114554q-41 + 1201843q-40 - 472021q-39 - 1986866q-38 - 2519411q-37 - 1716317q-36 + 115361q-35 + 1970962q-34 + 2851981q-33 + 2225279q-32 + 302357q-31 - 1857566q-30 - 3094980q-29 - 2692445q-28 - 744990q-27 + 1665046q-26 + 3242566q-25 + 3092927q-24 + 1180258q-23 - 1419298q-22 - 3302976q-21 - 3414284q-20 - 1581554q-19 + 1147652q-18 + 3291635q-17 + 3654409q-16 + 1933029q-15 - 871218q-14 - 3226808q-13 - 3821796q-12 - 2230153q-11 + 605219q-10 + 3125712q-9 + 3927949q-8 + 2475790q-7 - 354513q-6 - 2998849q-5 - 3985601q-4 - 2679467q-3 + 116463q-2 + 2851088q-1 + 4003929 + 2851088q + 116463q2 - 2679467q3 - 3985601q4 - 2998849q5 - 354513q6 + 2475790q7 + 3927949q8 + 3125712q9 + 605219q10 - 2230153q11 - 3821796q12 - 3226808q13 - 871218q14 + 1933029q15 + 3654409q16 + 3291635q17 + 1147652q18 - 1581554q19 - 3414284q20 - 3302976q21 - 1419298q22 + 1180258q23 + 3092927q24 + 3242566q25 + 1665046q26 - 744990q27 - 2692445q28 - 3094980q29 - 1857566q30 + 302357q31 + 2225279q32 + 2851981q33 + 1970962q34 + 115361q35 - 1716317q36 - 2519411q37 - 1986866q38 - 472021q39 + 1201843q40 + 2114554q41 + 1896713q42 + 739059q43 - 719003q44 - 1669310q45 - 1711298q46 - 897550q47 + 306842q48 + 1221252q49 + 1450627q50 + 945398q51 + 11346q52 - 808577q53 - 1150732q54 - 896607q55 - 221392q56 + 462550q57 + 845393q58 + 776717q59 + 330574q60 - 200388q61 - 569164q62 - 618567q63 - 355028q64 + 25746q65 + 342359q66 + 452773q67 + 322592q68 + 71385q69 - 176407q70 - 303242q71 - 258467q72 - 109616q73 + 67310q74 + 184499q75 + 187356q76 + 109229q77 - 7071q78 - 99742q79 - 122265q80 - 89764q81 - 20551q82 + 46302q83 + 73119q84 + 64437q85 + 26513q86 - 16667q87 - 38652q88 - 41366q89 - 23614q90 + 2513q91 + 18496q92 + 24415q93 + 16744q94 + 2220q95 - 7278q96 - 12818q97 - 10657q98 - 3301q99 + 2175q100 + 6463q101 + 6161q102 + 2314q103 - 291q104 - 2772q105 - 3107q106 - 1515q107 - 463q108 + 1208q109 + 1670q110 + 762q111 + 266q112 - 467q113 - 631q114 - 317q115 - 322q116 + 123q117 + 386q118 + 166q119 + 90q120 - 96q121 - 100q122 - q123 - 95q124 - 8q125 + 70q126 + 34q127 + 19q128 - 29q129 - 18q130 + 19q131 - 14q132 - 8q133 + 10q134 + 4q135 + 5q136 - 8q137 - 2q138 + 4q139 - q140


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 45]]
Out[2]=   
PD[X[4, 2, 5, 1], X[12, 6, 13, 5], X[10, 3, 11, 4], X[2, 11, 3, 12], 
 
>   X[20, 14, 1, 13], X[14, 7, 15, 8], X[6, 19, 7, 20], X[18, 15, 19, 16], 
 
>   X[16, 10, 17, 9], X[8, 18, 9, 17]]
In[3]:=
GaussCode[Knot[10, 45]]
Out[3]=   
GaussCode[1, -4, 3, -1, 2, -7, 6, -10, 9, -3, 4, -2, 5, -6, 8, -9, 10, -8, 7, 
 
>   -5]
In[4]:=
DTCode[Knot[10, 45]]
Out[4]=   
DTCode[4, 10, 12, 14, 16, 2, 20, 18, 8, 6]
In[5]:=
br = BR[Knot[10, 45]]
Out[5]=   
BR[5, {-1, 2, -1, 2, -3, 2, -3, 4, -3, 4}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{5, 10}
In[7]:=
BraidIndex[Knot[10, 45]]
Out[7]=   
5
In[8]:=
Show[DrawMorseLink[Knot[10, 45]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 45]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{FullyAmphicheiral, 2, 3, 2, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 45]][t]
Out[10]=   
      -3   7    21             2    3
31 - t   + -- - -- - 21 t + 7 t  - t
            2   t
           t
In[11]:=
Conway[Knot[10, 45]][z]
Out[11]=   
       2    4    6
1 - 2 z  + z  - z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 45]}
In[13]:=
{KnotDet[Knot[10, 45]], KnotSignature[Knot[10, 45]]}
Out[13]=   
{89, 0}
In[14]:=
Jones[Knot[10, 45]][q]
Out[14]=   
      -5   4    7    11   14              2      3      4    5
15 - q   + -- - -- + -- - -- - 14 q + 11 q  - 7 q  + 4 q  - q
            4    3    2   q
           q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 45]}
In[16]:=
A2Invariant[Knot[10, 45]][q]
Out[16]=   
      -16    -14    2     2    3    2    2       2      4      8      10
-3 - q    + q    + --- - --- + -- - -- + -- + 2 q  - 2 q  + 3 q  - 2 q   + 
                    12    10    8    4    2
                   q     q     q    q    q
 
       12    14    16
>   2 q   + q   - q
In[17]:=
HOMFLYPT[Knot[10, 45]][a, z]
Out[17]=   
                         2      2                               4
     2       2      2   z    3 z       2  2    4  2      4   2 z       2  4    6
-3 + -- + 2 a  - 6 z  - -- + ---- + 3 a  z  - a  z  - 3 z  + ---- + 2 a  z  - z
      2                  4     2                               2
     a                  a     a                               a
In[18]:=
Kauffman[Knot[10, 45]][a, z]
Out[18]=   
                                                      2       2
     2       2   z    5 z            3         2   3 z    12 z        2  2
-3 - -- - 2 a  - -- - --- - 5 a z - a  z + 18 z  + ---- + ----- + 12 a  z  + 
      2           3    a                             4      2
     a           a                                  a      a
 
               3      3       3                                          4
       4  2   z    5 z    21 z          3      3  3    5  3       4   7 z
>   3 a  z  - -- + ---- + ----- + 21 a z  + 5 a  z  - a  z  - 20 z  - ---- - 
               5     3      a                                           4
              a     a                                                  a
 
        4                         5       5       5
    17 z        2  4      4  4   z    10 z    31 z          5       3  5
>   ----- - 17 a  z  - 7 a  z  + -- - ----- - ----- - 31 a z  - 10 a  z  + 
      2                           5     3       a
     a                           a     a
 
                      6      6                          7       7
     5  5      6   4 z    3 z       2  6      4  6   6 z    14 z          7
>   a  z  - 2 z  + ---- + ---- + 3 a  z  + 4 a  z  + ---- + ----- + 14 a z  + 
                     4      2                          3      a
                    a      a                          a
 
                        8              9
       3  7      8   4 z       2  8   z       9
>   6 a  z  + 8 z  + ---- + 4 a  z  + -- + a z
                       2              a
                      a
In[19]:=
{Vassiliev[2][Knot[10, 45]], Vassiliev[3][Knot[10, 45]]}
Out[19]=   
{-2, 0}
In[20]:=
Kh[Knot[10, 45]][q, t]
Out[20]=   
8           1        3       1       4       3       7       4      7      7
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2    3     q t
          q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
               3        3  2      5  2      5  3      7  3    7  4      9  4
>   7 q t + 7 q  t + 4 q  t  + 7 q  t  + 3 q  t  + 4 q  t  + q  t  + 3 q  t  + 
 
     11  5
>   q   t
In[21]:=
ColouredJones[Knot[10, 45], 2][q]
Out[21]=   
       -15    4     2    13    24    51   61   18   116   98   55   180   112
207 + q    - --- + --- + --- - --- + -- - -- - -- + --- - -- - -- + --- - --- - 
              14    13    12    11    9    8    7    6     5    4    3     2
             q     q     q     q     q    q    q    q     q    q    q     q
 
    94               2        3       4       5        6       7       8
>   -- - 94 q - 112 q  + 180 q  - 55 q  - 98 q  + 116 q  - 18 q  - 61 q  + 
    q
 
        9       11       12      13      14    15
>   51 q  - 24 q   + 13 q   + 2 q   - 4 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1045
10.44
1044
10.46
1046