© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1044Visit 1044's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1044's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,20,14,1 X9,15,10,14 X15,18,16,19 X7,16,8,17 X17,8,18,9 X19,7,20,6 |
Gauss Code: | {-1, 4, -3, 1, -2, 10, -8, 9, -6, 3, -4, 2, -5, 6, -7, 8, -9, 7, -10, 5} |
DT (Dowker-Thistlethwaite) Code: | 4 10 12 16 14 2 20 18 8 6 |
Minimum Braid Representative:
Length is 10, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 7t-2 + 19t-1 - 25 + 19t - 7t2 + t3 |
Conway Polynomial: | 1 - z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n154, ...} |
Determinant and Signature: | {79, -2} |
Jones Polynomial: | q-7 - 4q-6 + 7q-5 - 10q-4 + 13q-3 - 13q-2 + 12q-1 - 9 + 6q - 3q2 + q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-22 - q-20 - 2q-18 + 2q-16 - 2q-14 + q-12 + 2q-10 - q-8 + 3q-6 - 2q-4 + 2q-2 - 2q2 + 2q4 - q6 + q10 |
HOMFLY-PT Polynomial: | a-2 + a-2z2 - 2 - 4z2 - 2z4 + 3a2 + 5a2z2 + 3a2z4 + a2z6 - a4 - 3a4z2 - 2a4z4 + a6z2 |
Kauffman Polynomial: | - a-2 + 3a-2z2 - 3a-2z4 + a-2z6 - 2a-1z + 8a-1z3 - 9a-1z5 + 3a-1z7 - 2 + 9z2 - 6z4 - 4z6 + 3z8 - 4az + 20az3 - 26az5 + 8az7 + az9 - 3a2 + 13a2z2 - 12a2z4 - 7a2z6 + 7a2z8 - 2a3z + 15a3z3 - 27a3z5 + 12a3z7 + a3z9 - a4 + 10a4z2 - 18a4z4 + 5a4z6 + 4a4z8 - 6a5z5 + 7a5z7 + 3a6z2 - 8a6z4 + 7a6z6 - 3a7z3 + 4a7z5 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1044. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 4q-19 + 3q-18 + 10q-17 - 24q-16 + 11q-15 + 35q-14 - 65q-13 + 20q-12 + 76q-11 - 112q-10 + 18q-9 + 118q-8 - 136q-7 + 2q-6 + 137q-5 - 123q-4 - 19q-3 + 123q-2 - 83q-1 - 31 + 84q - 38q2 - 28q3 + 40q4 - 9q5 - 14q6 + 11q7 - 3q9 + q10 |
3 | q-39 - 4q-38 + 3q-37 + 6q-36 - 4q-35 - 16q-34 + 8q-33 + 38q-32 - 24q-31 - 63q-30 + 34q-29 + 117q-28 - 59q-27 - 183q-26 + 75q-25 + 280q-24 - 90q-23 - 391q-22 + 90q-21 + 509q-20 - 66q-19 - 628q-18 + 30q-17 + 713q-16 + 39q-15 - 786q-14 - 98q-13 + 798q-12 + 183q-11 - 791q-10 - 247q-9 + 734q-8 + 316q-7 - 661q-6 - 356q-5 + 553q-4 + 390q-3 - 443q-2 - 389q-1 + 318 + 373q - 208q2 - 326q3 + 109q4 + 266q5 - 37q6 - 196q7 - 10q8 + 133q9 + 27q10 - 76q11 - 31q12 + 39q13 + 23q14 - 16q15 - 14q16 + 6q17 + 5q18 - 3q20 + q21 |
4 | q-64 - 4q-63 + 3q-62 + 6q-61 - 8q-60 + 4q-59 - 19q-58 + 21q-57 + 28q-56 - 46q-55 + 10q-54 - 59q-53 + 91q-52 + 100q-51 - 166q-50 - 31q-49 - 137q-48 + 308q-47 + 304q-46 - 425q-45 - 253q-44 - 328q-43 + 778q-42 + 825q-41 - 772q-40 - 826q-39 - 821q-38 + 1469q-37 + 1828q-36 - 959q-35 - 1705q-34 - 1802q-33 + 2072q-32 + 3193q-31 - 699q-30 - 2508q-29 - 3143q-28 + 2204q-27 + 4428q-26 + 22q-25 - 2792q-24 - 4391q-23 + 1765q-22 + 5053q-21 + 904q-20 - 2444q-19 - 5115q-18 + 960q-17 + 4916q-16 + 1661q-15 - 1633q-14 - 5201q-13 + 27q-12 + 4163q-11 + 2170q-10 - 596q-9 - 4710q-8 - 853q-7 + 2980q-6 + 2343q-5 + 462q-4 - 3719q-3 - 1464q-2 + 1595q-1 + 2061 + 1255q - 2386q2 - 1569q3 + 362q4 + 1354q5 + 1499q6 - 1086q7 - 1151q8 - 343q9 + 540q10 + 1174q11 - 229q12 - 534q13 - 451q14 + 13q15 + 621q16 + 73q17 - 108q18 - 251q19 - 127q20 + 212q21 + 66q22 + 29q23 - 74q24 - 76q25 + 45q26 + 15q27 + 23q28 - 9q29 - 21q30 + 6q31 + 5q33 - 3q35 + q36 |
5 | q-95 - 4q-94 + 3q-93 + 6q-92 - 8q-91 + q-89 - 6q-88 + 11q-87 + 16q-86 - 24q-85 - 22q-84 + 11q-83 + 27q-82 + 41q-81 - 7q-80 - 89q-79 - 101q-78 + 43q-77 + 230q-76 + 185q-75 - 116q-74 - 421q-73 - 416q-72 + 154q-71 + 889q-70 + 817q-69 - 283q-68 - 1472q-67 - 1534q-66 + 189q-65 + 2471q-64 + 2730q-63 - 17q-62 - 3645q-61 - 4489q-60 - 676q-59 + 5078q-58 + 6960q-57 + 1893q-56 - 6469q-55 - 10050q-54 - 3928q-53 + 7603q-52 + 13609q-51 + 6797q-50 - 8170q-49 - 17317q-48 - 10396q-47 + 7919q-46 + 20764q-45 + 14531q-44 - 6836q-43 - 23548q-42 - 18696q-41 + 4801q-40 + 25432q-39 + 22673q-38 - 2316q-37 - 26206q-36 - 25834q-35 - 708q-34 + 25952q-33 + 28340q-32 + 3546q-31 - 24799q-30 - 29670q-29 - 6433q-28 + 22916q-27 + 30332q-26 + 8861q-25 - 20559q-24 - 29999q-23 - 11142q-22 + 17757q-21 + 29199q-20 + 12992q-19 - 14656q-18 - 27674q-17 - 14703q-16 + 11280q-15 + 25730q-14 + 15981q-13 - 7686q-12 - 23113q-11 - 16985q-10 + 3999q-9 + 20080q-8 + 17299q-7 - 399q-6 - 16416q-5 - 17034q-4 - 2878q-3 + 12537q-2 + 15863q-1 + 5502 - 8439q - 13966q2 - 7300q3 + 4650q4 + 11381q5 + 8064q6 - 1359q7 - 8471q8 - 7839q9 - 1080q10 + 5533q11 + 6814q12 + 2585q13 - 2988q14 - 5280q15 - 3126q16 + 990q17 + 3613q18 + 3000q19 + 238q20 - 2119q21 - 2380q22 - 847q23 + 964q24 + 1663q25 + 952q26 - 260q27 - 973q28 - 797q29 - 91q30 + 479q31 + 537q32 + 203q33 - 176q34 - 322q35 - 172q36 + 43q37 + 138q38 + 122q39 + 22q40 - 70q41 - 65q42 - 9q43 + 12q44 + 24q45 + 23q46 - 9q47 - 14q48 - q49 + 5q52 - 3q54 + q55 |
6 | q-132 - 4q-131 + 3q-130 + 6q-129 - 8q-128 - 3q-126 + 14q-125 - 16q-124 - q-123 + 38q-122 - 46q-121 - 3q-120 + 8q-119 + 64q-118 - 42q-117 - 42q-116 + 84q-115 - 166q-114 - 6q-113 + 118q-112 + 297q-111 - 85q-110 - 236q-109 - 13q-108 - 601q-107 + 9q-106 + 626q-105 + 1211q-104 + 104q-103 - 850q-102 - 904q-101 - 2181q-100 - 210q-99 + 2244q-98 + 4223q-97 + 1675q-96 - 1941q-95 - 4123q-94 - 7224q-93 - 2123q-92 + 5632q-91 + 12213q-90 + 7989q-89 - 1951q-88 - 11394q-87 - 20180q-86 - 10171q-85 + 9299q-84 + 28235q-83 + 25203q-82 + 4673q-81 - 21474q-80 - 45363q-79 - 32092q-78 + 6550q-77 + 50886q-76 + 58558q-75 + 27249q-74 - 26326q-73 - 80596q-72 - 73488q-71 - 13396q-70 + 70000q-69 + 104399q-68 + 71429q-67 - 13560q-66 - 113011q-65 - 128680q-64 - 56021q-63 + 71026q-62 + 147061q-61 + 129644q-60 + 22323q-59 - 126046q-58 - 179615q-57 - 112317q-56 + 47931q-55 + 168745q-54 + 182621q-53 + 71806q-52 - 113417q-51 - 208320q-50 - 163154q-49 + 9697q-48 + 163686q-47 + 213635q-46 + 117205q-45 - 83508q-44 - 210075q-43 - 194144q-42 - 28468q-41 + 139901q-40 + 219668q-39 + 147103q-38 - 49180q-37 - 192503q-36 - 204126q-35 - 58209q-34 + 108189q-33 + 208017q-32 + 161950q-31 - 16471q-30 - 164410q-29 - 199795q-28 - 80895q-27 + 72822q-26 + 185480q-25 + 167286q-24 + 16017q-23 - 128423q-22 - 185587q-21 - 100096q-20 + 32622q-19 + 152757q-18 + 164616q-17 + 49437q-16 - 83318q-15 - 159720q-14 - 113701q-13 - 11482q-12 + 107842q-11 + 149115q-10 + 78152q-9 - 31479q-8 - 118814q-7 - 113407q-6 - 51005q-5 + 53795q-4 + 115705q-3 + 90840q-2 + 16382q-1 - 66258 - 92341q - 72458q2 + 2930q3 + 68092q4 + 79585q5 + 45187q6 - 15759q7 - 54563q8 - 67765q9 - 28709q10 + 21236q11 + 49424q12 + 47133q13 + 16075q14 - 15944q15 - 43344q16 - 34063q17 - 8188q18 + 17128q19 + 29811q20 + 23201q21 + 7434q22 - 16449q23 - 21664q24 - 15416q25 - 2164q26 + 10054q27 + 14728q28 + 12265q29 - 713q30 - 7232q31 - 9705q32 - 6420q33 - 659q34 + 4696q35 + 7436q36 + 3047q37 + 102q38 - 2988q39 - 3618q40 - 2600q41 - 26q42 + 2472q43 + 1691q44 + 1300q45 - 83q46 - 892q47 - 1367q48 - 695q49 + 402q50 + 342q51 + 607q52 + 289q53 + 29q54 - 380q55 - 309q56 + 11q57 - 33q58 + 131q59 + 108q60 + 91q61 - 66q62 - 72q63 + 2q64 - 33q65 + 12q66 + 15q67 + 32q68 - 9q69 - 14q70 + 6q71 - 7q72 + 5q75 - 3q77 + q78 |
7 | q-175 - 4q-174 + 3q-173 + 6q-172 - 8q-171 - 3q-169 + 10q-168 + 4q-167 - 28q-166 + 21q-165 + 16q-164 - 27q-163 + 4q-162 - 6q-161 + 42q-160 + 19q-159 - 111q-158 + 23q-157 + 21q-156 - 46q-155 + 95q-154 + 29q-153 + 148q-152 + 40q-151 - 403q-150 - 177q-149 - 133q-148 + 7q-147 + 631q-146 + 499q-145 + 556q-144 + 5q-143 - 1463q-142 - 1414q-141 - 1152q-140 + 172q-139 + 2748q-138 + 3028q-137 + 2611q-136 - 10q-135 - 4954q-134 - 6573q-133 - 5799q-132 - 325q-131 + 8866q-130 + 12651q-129 + 11462q-128 + 2133q-127 - 13928q-126 - 23237q-125 - 22920q-124 - 6737q-123 + 21478q-122 + 40000q-121 + 41612q-120 + 16976q-119 - 28681q-118 - 64382q-117 - 73292q-116 - 37664q-115 + 34777q-114 + 97677q-113 + 120262q-112 + 73887q-111 - 33225q-110 - 137666q-109 - 187254q-108 - 133320q-107 + 18033q-106 + 181069q-105 + 274214q-104 + 221068q-103 + 20331q-102 - 219195q-101 - 378516q-100 - 341407q-99 - 90679q-98 + 241975q-97 + 492362q-96 + 492786q-95 + 199396q-94 - 237224q-93 - 603277q-92 - 668161q-91 - 348374q-90 + 194535q-89 + 696561q-88 + 854697q-87 + 532499q-86 - 108435q-85 - 757598q-84 - 1035078q-83 - 740036q-82 - 20303q-81 + 775803q-80 + 1191763q-79 + 953800q-78 + 183262q-77 - 746710q-76 - 1309925q-75 - 1155586q-74 - 366080q-73 + 674572q-72 + 1380436q-71 + 1327561q-70 + 551898q-69 - 567724q-68 - 1402327q-67 - 1459885q-66 - 724125q-65 + 441973q-64 + 1380740q-63 + 1545461q-62 + 870750q-61 - 308921q-60 - 1325614q-59 - 1589043q-58 - 985615q-57 + 182852q-56 + 1248864q-55 + 1594747q-54 + 1067741q-53 - 67786q-52 - 1159914q-51 - 1574302q-50 - 1122699q-49 - 32050q-48 + 1066833q-47 + 1534307q-46 + 1156278q-45 + 121095q-44 - 970934q-43 - 1483165q-42 - 1177150q-41 - 202848q-40 + 872698q-39 + 1422619q-38 + 1189631q-37 + 284212q-36 - 767567q-35 - 1353559q-34 - 1197353q-33 - 368307q-32 + 651959q-31 + 1271838q-30 + 1198939q-29 + 457764q-28 - 521921q-27 - 1174101q-26 - 1190447q-25 - 549427q-24 + 376272q-23 + 1054501q-22 + 1165551q-21 + 638985q-20 - 217266q-19 - 911614q-18 - 1116948q-17 - 716199q-16 + 51137q-15 + 744192q-14 + 1038245q-13 + 772182q-12 + 112457q-11 - 558534q-10 - 926661q-9 - 795122q-8 - 260086q-7 + 362479q-6 + 782706q-5 + 778790q-4 + 379257q-3 - 170573q-2 - 614408q-1 - 719351 - 457221q - 2703q2 + 433014q3 + 620928q4 + 487946q5 + 142246q6 - 255231q7 - 493271q8 - 470395q9 - 237316q10 + 97178q11 + 351522q12 + 411609q13 + 283497q14 + 27256q15 - 212913q16 - 324744q17 - 284034q18 - 109550q19 + 93371q20 + 225931q21 + 248456q22 + 149286q23 - 3444q24 - 131704q25 - 191642q26 - 152507q27 - 51775q28 + 54504q29 + 127923q30 + 130139q31 + 75725q32 - 704q33 - 70757q34 - 95423q35 - 75247q36 - 28566q37 + 27160q38 + 59020q39 + 60676q40 + 38471q41 + 52q42 - 29287q43 - 40993q44 - 35259q45 - 12800q46 + 8954q47 + 22796q48 + 26149q49 + 15561q50 + 2028q51 - 9616q52 - 16248q53 - 12892q54 - 5906q55 + 1869q56 + 8223q57 + 8460q58 + 5972q59 + 1678q60 - 3304q61 - 4679q62 - 4247q63 - 2297q64 + 673q65 + 1882q66 + 2500q67 + 2053q68 + 290q69 - 660q70 - 1224q71 - 1186q72 - 390q73 - 69q74 + 415q75 + 729q76 + 355q77 + 116q78 - 173q79 - 290q80 - 117q81 - 144q82 - 40q83 + 139q84 + 103q85 + 77q86 - 8q87 - 57q88 + 6q89 - 33q90 - 33q91 + 12q92 + 15q93 + 23q94 - 14q96 + 6q97 - 7q99 + 5q102 - 3q104 + q105 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 44]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], > X[13, 20, 14, 1], X[9, 15, 10, 14], X[15, 18, 16, 19], X[7, 16, 8, 17], > X[17, 8, 18, 9], X[19, 7, 20, 6]] |
In[3]:= | GaussCode[Knot[10, 44]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 10, -8, 9, -6, 3, -4, 2, -5, 6, -7, 8, -9, 7, -10, > 5] |
In[4]:= | DTCode[Knot[10, 44]] |
Out[4]= | DTCode[4, 10, 12, 16, 14, 2, 20, 18, 8, 6] |
In[5]:= | br = BR[Knot[10, 44]] |
Out[5]= | BR[5, {-1, -1, 2, -1, -3, 2, -3, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[10, 44]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 44]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 44]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 44]][t] |
Out[10]= | -3 7 19 2 3 -25 + t - -- + -- + 19 t - 7 t + t 2 t t |
In[11]:= | Conway[Knot[10, 44]][z] |
Out[11]= | 4 6 1 - z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 44], Knot[11, NonAlternating, 154]} |
In[13]:= | {KnotDet[Knot[10, 44]], KnotSignature[Knot[10, 44]]} |
Out[13]= | {79, -2} |
In[14]:= | Jones[Knot[10, 44]][q] |
Out[14]= | -7 4 7 10 13 13 12 2 3 -9 + q - -- + -- - -- + -- - -- + -- + 6 q - 3 q + q 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 44]} |
In[16]:= | A2Invariant[Knot[10, 44]][q] |
Out[16]= | -22 -20 2 2 2 -12 2 -8 3 2 2 2 4 q - q - --- + --- - --- + q + --- - q + -- - -- + -- - 2 q + 2 q - 18 16 14 10 6 4 2 q q q q q q q 6 10 > q + q |
In[17]:= | HOMFLYPT[Knot[10, 44]][a, z] |
Out[17]= | 2 -2 2 4 2 z 2 2 4 2 6 2 4 2 4 -2 + a + 3 a - a - 4 z + -- + 5 a z - 3 a z + a z - 2 z + 3 a z - 2 a 4 4 2 6 > 2 a z + a z |
In[18]:= | Kauffman[Knot[10, 44]][a, z] |
Out[18]= | 2 -2 2 4 2 z 3 2 3 z 2 2 -2 - a - 3 a - a - --- - 4 a z - 2 a z + 9 z + ---- + 13 a z + a 2 a 3 4 4 2 6 2 8 z 3 3 3 7 3 4 3 z > 10 a z + 3 a z + ---- + 20 a z + 15 a z - 3 a z - 6 z - ---- - a 2 a 5 2 4 4 4 6 4 8 4 9 z 5 3 5 > 12 a z - 18 a z - 8 a z + a z - ---- - 26 a z - 27 a z - a 6 7 5 5 7 5 6 z 2 6 4 6 6 6 3 z > 6 a z + 4 a z - 4 z + -- - 7 a z + 5 a z + 7 a z + ---- + 2 a a 7 3 7 5 7 8 2 8 4 8 9 3 9 > 8 a z + 12 a z + 7 a z + 3 z + 7 a z + 4 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 44]], Vassiliev[3][Knot[10, 44]]} |
Out[19]= | {0, -1} |
In[20]:= | Kh[Knot[10, 44]][q, t] |
Out[20]= | 6 7 1 3 1 4 3 6 4 7 -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q q t q t q t q t q t q t q t q t 6 6 7 4 t 2 3 2 3 3 5 3 > ----- + ---- + ---- + --- + 5 q t + 2 q t + 4 q t + q t + 2 q t + 5 2 5 3 q q t q t q t 7 4 > q t |
In[21]:= | ColouredJones[Knot[10, 44], 2][q] |
Out[21]= | -20 4 3 10 24 11 35 65 20 76 112 18 -31 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + -- + 19 18 17 16 15 14 13 12 11 10 9 q q q q q q q q q q q 118 136 2 137 123 19 123 83 2 3 4 > --- - --- + -- + --- - --- - -- + --- - -- + 84 q - 38 q - 28 q + 40 q - 8 7 6 5 4 3 2 q q q q q q q q 5 6 7 9 10 > 9 q - 14 q + 11 q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1044 |
|