© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1043Visit 1043's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1043's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X10,4,11,3 X14,8,15,7 X20,11,1,12 X12,19,13,20 X8,14,9,13 X18,15,19,16 X16,5,17,6 X6,17,7,18 X2,10,3,9 |
Gauss Code: | {1, -10, 2, -1, 8, -9, 3, -6, 10, -2, 4, -5, 6, -3, 7, -8, 9, -7, 5, -4} |
DT (Dowker-Thistlethwaite) Code: | 4 10 16 14 2 20 8 18 6 12 |
Minimum Braid Representative:
Length is 10, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 7t-2 - 17t-1 + 23 - 17t + 7t2 - t3 |
Conway Polynomial: | 1 + 2z2 + z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {73, 0} |
Jones Polynomial: | - q-5 + 3q-4 - 6q-3 + 9q-2 - 11q-1 + 13 - 11q + 9q2 - 6q3 + 3q4 - q5 |
Other knots (up to mirrors) with the same Jones Polynomial: | {1091, ...} |
A2 (sl(3)) Invariant: | - q-16 + q-12 - 2q-10 + 2q-8 - q-4 + 3q-2 - 1 + 3q2 - q4 + 2q8 - 2q10 + q12 - q16 |
HOMFLY-PT Polynomial: | - a-4 - a-4z2 + 2a-2 + 4a-2z2 + 2a-2z4 - 1 - 4z2 - 3z4 - z6 + 2a2 + 4a2z2 + 2a2z4 - a4 - a4z2 |
Kauffman Polynomial: | a-5z - 2a-5z3 + a-5z5 - a-4 + 3a-4z2 - 6a-4z4 + 3a-4z6 + a-3z3 - 6a-3z5 + 4a-3z7 - 2a-2 + 7a-2z2 - 8a-2z4 + 3a-2z8 - 3a-1z + 12a-1z3 - 16a-1z5 + 7a-1z7 + a-1z9 - 1 + 8z2 - 4z4 - 6z6 + 6z8 - 3az + 12az3 - 16az5 + 7az7 + az9 - 2a2 + 7a2z2 - 8a2z4 + 3a2z8 + a3z3 - 6a3z5 + 4a3z7 - a4 + 3a4z2 - 6a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1043. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 3q-14 + q-13 + 9q-12 - 16q-11 + 34q-9 - 41q-8 - 12q-7 + 77q-6 - 65q-5 - 37q-4 + 120q-3 - 74q-2 - 63q-1 + 139 - 63q - 74q2 + 120q3 - 37q4 - 65q5 + 77q6 - 12q7 - 41q8 + 34q9 - 16q11 + 9q12 + q13 - 3q14 + q15 |
3 | - q-30 + 3q-29 - q-28 - 4q-27 - 2q-26 + 13q-25 + 3q-24 - 26q-23 - 9q-22 + 48q-21 + 23q-20 - 77q-19 - 55q-18 + 117q-17 + 102q-16 - 153q-15 - 174q-14 + 183q-13 + 265q-12 - 199q-11 - 367q-10 + 193q-9 + 474q-8 - 175q-7 - 562q-6 + 129q-5 + 645q-4 - 90q-3 - 679q-2 + 20q-1 + 713 + 20q - 679q2 - 90q3 + 645q4 + 129q5 - 562q6 - 175q7 + 474q8 + 193q9 - 367q10 - 199q11 + 265q12 + 183q13 - 174q14 - 153q15 + 102q16 + 117q17 - 55q18 - 77q19 + 23q20 + 48q21 - 9q22 - 26q23 + 3q24 + 13q25 - 2q26 - 4q27 - q28 + 3q29 - q30 |
4 | q-50 - 3q-49 + q-48 + 4q-47 - 3q-46 + 5q-45 - 16q-44 + 5q-43 + 22q-42 - 12q-41 + 13q-40 - 64q-39 + 13q-38 + 89q-37 - 9q-36 + 23q-35 - 211q-34 - 15q-33 + 242q-32 + 95q-31 + 103q-30 - 539q-29 - 225q-28 + 425q-27 + 420q-26 + 448q-25 - 992q-24 - 781q-23 + 391q-22 + 923q-21 + 1262q-20 - 1297q-19 - 1640q-18 - 100q-17 + 1336q-16 + 2463q-15 - 1193q-14 - 2480q-13 - 992q-12 + 1399q-11 + 3678q-10 - 701q-9 - 2982q-8 - 1951q-7 + 1097q-6 + 4523q-5 - 48q-4 - 3036q-3 - 2678q-2 + 577q-1 + 4821 + 577q - 2678q2 - 3036q3 - 48q4 + 4523q5 + 1097q6 - 1951q7 - 2982q8 - 701q9 + 3678q10 + 1399q11 - 992q12 - 2480q13 - 1193q14 + 2463q15 + 1336q16 - 100q17 - 1640q18 - 1297q19 + 1262q20 + 923q21 + 391q22 - 781q23 - 992q24 + 448q25 + 420q26 + 425q27 - 225q28 - 539q29 + 103q30 + 95q31 + 242q32 - 15q33 - 211q34 + 23q35 - 9q36 + 89q37 + 13q38 - 64q39 + 13q40 - 12q41 + 22q42 + 5q43 - 16q44 + 5q45 - 3q46 + 4q47 + q48 - 3q49 + q50 |
5 | - q-75 + 3q-74 - q-73 - 4q-72 + 3q-71 - 2q-69 + 8q-68 - q-67 - 17q-66 + 5q-65 + 13q-64 + 4q-63 + 12q-62 - 18q-61 - 52q-60 - 12q-59 + 63q-58 + 86q-57 + 43q-56 - 83q-55 - 210q-54 - 133q-53 + 136q-52 + 380q-51 + 325q-50 - 121q-49 - 637q-48 - 689q-47 - 25q-46 + 929q-45 + 1294q-44 + 422q-43 - 1192q-42 - 2106q-41 - 1211q-40 + 1201q-39 + 3146q-38 + 2492q-37 - 841q-36 - 4191q-35 - 4256q-34 - 168q-33 + 5047q-32 + 6478q-31 + 1863q-30 - 5477q-29 - 8880q-28 - 4271q-27 + 5245q-26 + 11234q-25 + 7269q-24 - 4313q-23 - 13276q-22 - 10523q-21 + 2664q-20 + 14749q-19 + 13865q-18 - 531q-17 - 15638q-16 - 16843q-15 - 1956q-14 + 15848q-13 + 19490q-12 + 4414q-11 - 15583q-10 - 21374q-9 - 6881q-8 + 14811q-7 + 22904q-6 + 8939q-5 - 13816q-4 - 23551q-3 - 10902q-2 + 12396q-1 + 24011 + 12396q - 10902q2 - 23551q3 - 13816q4 + 8939q5 + 22904q6 + 14811q7 - 6881q8 - 21374q9 - 15583q10 + 4414q11 + 19490q12 + 15848q13 - 1956q14 - 16843q15 - 15638q16 - 531q17 + 13865q18 + 14749q19 + 2664q20 - 10523q21 - 13276q22 - 4313q23 + 7269q24 + 11234q25 + 5245q26 - 4271q27 - 8880q28 - 5477q29 + 1863q30 + 6478q31 + 5047q32 - 168q33 - 4256q34 - 4191q35 - 841q36 + 2492q37 + 3146q38 + 1201q39 - 1211q40 - 2106q41 - 1192q42 + 422q43 + 1294q44 + 929q45 - 25q46 - 689q47 - 637q48 - 121q49 + 325q50 + 380q51 + 136q52 - 133q53 - 210q54 - 83q55 + 43q56 + 86q57 + 63q58 - 12q59 - 52q60 - 18q61 + 12q62 + 4q63 + 13q64 + 5q65 - 17q66 - q67 + 8q68 - 2q69 + 3q71 - 4q72 - q73 + 3q74 - q75 |
6 | q-105 - 3q-104 + q-103 + 4q-102 - 3q-101 - 3q-99 + 10q-98 - 12q-97 - 4q-96 + 24q-95 - 15q-94 - 7q-93 - 14q-92 + 41q-91 - 19q-90 - 11q-89 + 76q-88 - 50q-87 - 61q-86 - 84q-85 + 114q-84 + 4q-83 + 51q-82 + 267q-81 - 100q-80 - 258q-79 - 428q-78 + 93q-77 + 38q-76 + 368q-75 + 991q-74 + 160q-73 - 589q-72 - 1486q-71 - 676q-70 - 514q-69 + 927q-68 + 2996q-67 + 1953q-66 - 59q-65 - 3288q-64 - 3380q-63 - 3684q-62 + 116q-61 + 6248q-60 + 7223q-59 + 4442q-58 - 3376q-57 - 7889q-56 - 12321q-55 - 6556q-54 + 7111q-53 + 15762q-52 + 16748q-51 + 4389q-50 - 9267q-49 - 25989q-48 - 23875q-47 - 2268q-46 + 21250q-45 + 35978q-44 + 25627q-43 + 1759q-42 - 36928q-41 - 50258q-40 - 27884q-39 + 13281q-38 + 52984q-37 + 57855q-36 + 30871q-35 - 33972q-34 - 75218q-33 - 65948q-32 - 13251q-31 + 56227q-30 + 89484q-29 + 72728q-28 - 12794q-27 - 87051q-26 - 103813q-25 - 51912q-24 + 42116q-23 + 108858q-22 + 114021q-21 + 19679q-20 - 82554q-19 - 129986q-18 - 89788q-17 + 17398q-16 + 112929q-15 + 143888q-14 + 51839q-13 - 67528q-12 - 141491q-11 - 117644q-10 - 8262q-9 + 106283q-8 + 159774q-7 + 76628q-6 - 49230q-5 - 141787q-4 - 134096q-3 - 30121q-2 + 93967q-1 + 164447 + 93967q - 30121q2 - 134096q3 - 141787q4 - 49230q5 + 76628q6 + 159774q7 + 106283q8 - 8262q9 - 117644q10 - 141491q11 - 67528q12 + 51839q13 + 143888q14 + 112929q15 + 17398q16 - 89788q17 - 129986q18 - 82554q19 + 19679q20 + 114021q21 + 108858q22 + 42116q23 - 51912q24 - 103813q25 - 87051q26 - 12794q27 + 72728q28 + 89484q29 + 56227q30 - 13251q31 - 65948q32 - 75218q33 - 33972q34 + 30871q35 + 57855q36 + 52984q37 + 13281q38 - 27884q39 - 50258q40 - 36928q41 + 1759q42 + 25627q43 + 35978q44 + 21250q45 - 2268q46 - 23875q47 - 25989q48 - 9267q49 + 4389q50 + 16748q51 + 15762q52 + 7111q53 - 6556q54 - 12321q55 - 7889q56 - 3376q57 + 4442q58 + 7223q59 + 6248q60 + 116q61 - 3684q62 - 3380q63 - 3288q64 - 59q65 + 1953q66 + 2996q67 + 927q68 - 514q69 - 676q70 - 1486q71 - 589q72 + 160q73 + 991q74 + 368q75 + 38q76 + 93q77 - 428q78 - 258q79 - 100q80 + 267q81 + 51q82 + 4q83 + 114q84 - 84q85 - 61q86 - 50q87 + 76q88 - 11q89 - 19q90 + 41q91 - 14q92 - 7q93 - 15q94 + 24q95 - 4q96 - 12q97 + 10q98 - 3q99 - 3q101 + 4q102 + q103 - 3q104 + q105 |
7 | - q-140 + 3q-139 - q-138 - 4q-137 + 3q-136 + 3q-134 - 5q-133 - 6q-132 + 17q-131 - 3q-130 - 14q-129 + 9q-128 + q-127 + 15q-126 - 19q-125 - 42q-124 + 45q-123 + 2q-122 - 18q-121 + 39q-120 + 10q-119 + 68q-118 - 50q-117 - 174q-116 + 9q-115 - 34q-114 + 6q-113 + 194q-112 + 134q-111 + 298q-110 - q-109 - 519q-108 - 358q-107 - 485q-106 - 150q-105 + 575q-104 + 764q-103 + 1339q-102 + 731q-101 - 838q-100 - 1515q-99 - 2494q-98 - 1887q-97 + 377q-96 + 2138q-95 + 4694q-94 + 4538q-93 + 1095q-92 - 2545q-91 - 7574q-90 - 8898q-89 - 4904q-88 + 1197q-87 + 10644q-86 + 15725q-85 + 12419q-84 + 3589q-83 - 12443q-82 - 24513q-81 - 24767q-80 - 14354q-79 + 9976q-78 + 33315q-77 + 42490q-76 + 34050q-75 + 732q-74 - 38952q-73 - 64124q-72 - 63964q-71 - 24136q-70 + 35372q-69 + 85468q-68 + 104309q-67 + 64412q-66 - 16391q-65 - 100501q-64 - 151269q-63 - 122458q-62 - 24335q-61 + 100193q-60 + 197990q-59 + 196910q-58 + 90766q-57 - 76908q-56 - 235459q-55 - 280827q-54 - 182208q-53 + 23931q-52 + 253063q-51 + 364974q-50 + 294335q-49 + 60477q-48 - 243117q-47 - 438222q-46 - 417385q-45 - 172982q-44 + 200777q-43 + 490054q-42 + 540163q-41 + 306167q-40 - 127016q-39 - 514316q-38 - 651051q-37 - 448164q-36 + 27622q-35 + 507971q-34 + 740849q-33 + 587933q-32 + 88256q-31 - 474510q-30 - 804621q-29 - 714236q-28 - 209726q-27 + 419379q-26 + 841558q-25 + 820830q-24 + 326836q-23 - 351732q-22 - 854440q-21 - 903552q-20 - 432404q-19 + 278527q-18 + 848945q-17 + 964114q-16 + 521787q-15 - 207664q-14 - 830347q-13 - 1003675q-12 - 594982q-11 + 140939q-10 + 804347q-9 + 1028826q-8 + 653107q-7 - 81995q-6 - 773486q-5 - 1040657q-4 - 700076q-3 + 26108q-2 + 739188q-1 + 1045555 + 739188q + 26108q2 - 700076q3 - 1040657q4 - 773486q5 - 81995q6 + 653107q7 + 1028826q8 + 804347q9 + 140939q10 - 594982q11 - 1003675q12 - 830347q13 - 207664q14 + 521787q15 + 964114q16 + 848945q17 + 278527q18 - 432404q19 - 903552q20 - 854440q21 - 351732q22 + 326836q23 + 820830q24 + 841558q25 + 419379q26 - 209726q27 - 714236q28 - 804621q29 - 474510q30 + 88256q31 + 587933q32 + 740849q33 + 507971q34 + 27622q35 - 448164q36 - 651051q37 - 514316q38 - 127016q39 + 306167q40 + 540163q41 + 490054q42 + 200777q43 - 172982q44 - 417385q45 - 438222q46 - 243117q47 + 60477q48 + 294335q49 + 364974q50 + 253063q51 + 23931q52 - 182208q53 - 280827q54 - 235459q55 - 76908q56 + 90766q57 + 196910q58 + 197990q59 + 100193q60 - 24335q61 - 122458q62 - 151269q63 - 100501q64 - 16391q65 + 64412q66 + 104309q67 + 85468q68 + 35372q69 - 24136q70 - 63964q71 - 64124q72 - 38952q73 + 732q74 + 34050q75 + 42490q76 + 33315q77 + 9976q78 - 14354q79 - 24767q80 - 24513q81 - 12443q82 + 3589q83 + 12419q84 + 15725q85 + 10644q86 + 1197q87 - 4904q88 - 8898q89 - 7574q90 - 2545q91 + 1095q92 + 4538q93 + 4694q94 + 2138q95 + 377q96 - 1887q97 - 2494q98 - 1515q99 - 838q100 + 731q101 + 1339q102 + 764q103 + 575q104 - 150q105 - 485q106 - 358q107 - 519q108 - q109 + 298q110 + 134q111 + 194q112 + 6q113 - 34q114 + 9q115 - 174q116 - 50q117 + 68q118 + 10q119 + 39q120 - 18q121 + 2q122 + 45q123 - 42q124 - 19q125 + 15q126 + q127 + 9q128 - 14q129 - 3q130 + 17q131 - 6q132 - 5q133 + 3q134 + 3q136 - 4q137 - q138 + 3q139 - q140 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 43]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 8, 15, 7], X[20, 11, 1, 12], > X[12, 19, 13, 20], X[8, 14, 9, 13], X[18, 15, 19, 16], X[16, 5, 17, 6], > X[6, 17, 7, 18], X[2, 10, 3, 9]] |
In[3]:= | GaussCode[Knot[10, 43]] |
Out[3]= | GaussCode[1, -10, 2, -1, 8, -9, 3, -6, 10, -2, 4, -5, 6, -3, 7, -8, 9, -7, 5, > -4] |
In[4]:= | DTCode[Knot[10, 43]] |
Out[4]= | DTCode[4, 10, 16, 14, 2, 20, 8, 18, 6, 12] |
In[5]:= | br = BR[Knot[10, 43]] |
Out[5]= | BR[5, {-1, -1, 2, -1, -3, 2, 4, -3, 4, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[10, 43]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 43]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 43]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {FullyAmphicheiral, 2, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 43]][t] |
Out[10]= | -3 7 17 2 3 23 - t + -- - -- - 17 t + 7 t - t 2 t t |
In[11]:= | Conway[Knot[10, 43]][z] |
Out[11]= | 2 4 6 1 + 2 z + z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 43]} |
In[13]:= | {KnotDet[Knot[10, 43]], KnotSignature[Knot[10, 43]]} |
Out[13]= | {73, 0} |
In[14]:= | Jones[Knot[10, 43]][q] |
Out[14]= | -5 3 6 9 11 2 3 4 5 13 - q + -- - -- + -- - -- - 11 q + 9 q - 6 q + 3 q - q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 43], Knot[10, 91]} |
In[16]:= | A2Invariant[Knot[10, 43]][q] |
Out[16]= | -16 -12 2 2 -4 3 2 4 8 10 12 16 -1 - q + q - --- + -- - q + -- + 3 q - q + 2 q - 2 q + q - q 10 8 2 q q q |
In[17]:= | HOMFLYPT[Knot[10, 43]][a, z] |
Out[17]= | 2 2 4 -4 2 2 4 2 z 4 z 2 2 4 2 4 2 z -1 - a + -- + 2 a - a - 4 z - -- + ---- + 4 a z - a z - 3 z + ---- + 2 4 2 2 a a a a 2 4 6 > 2 a z - z |
In[18]:= | Kauffman[Knot[10, 43]][a, z] |
Out[18]= | 2 2 -4 2 2 4 z 3 z 5 2 3 z 7 z -1 - a - -- - 2 a - a + -- - --- - 3 a z + a z + 8 z + ---- + ---- + 2 5 a 4 2 a a a a 3 3 3 2 2 4 2 2 z z 12 z 3 3 3 5 3 4 > 7 a z + 3 a z - ---- + -- + ----- + 12 a z + a z - 2 a z - 4 z - 5 3 a a a 4 4 5 5 5 6 z 8 z 2 4 4 4 z 6 z 16 z 5 3 5 > ---- - ---- - 8 a z - 6 a z + -- - ---- - ----- - 16 a z - 6 a z + 4 2 5 3 a a a a a 6 7 7 5 5 6 3 z 4 6 4 z 7 z 7 3 7 8 > a z - 6 z + ---- + 3 a z + ---- + ---- + 7 a z + 4 a z + 6 z + 4 3 a a a 8 9 3 z 2 8 z 9 > ---- + 3 a z + -- + a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[10, 43]], Vassiliev[3][Knot[10, 43]]} |
Out[19]= | {2, 0} |
In[20]:= | Kh[Knot[10, 43]][q, t] |
Out[20]= | 7 1 2 1 4 2 5 4 6 5 - + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 5 3 7 3 7 4 9 4 > 5 q t + 6 q t + 4 q t + 5 q t + 2 q t + 4 q t + q t + 2 q t + 11 5 > q t |
In[21]:= | ColouredJones[Knot[10, 43], 2][q] |
Out[21]= | -15 3 -13 9 16 34 41 12 77 65 37 120 74 139 + q - --- + q + --- - --- + -- - -- - -- + -- - -- - -- + --- - -- - 14 12 11 9 8 7 6 5 4 3 2 q q q q q q q q q q q 63 2 3 4 5 6 7 8 > -- - 63 q - 74 q + 120 q - 37 q - 65 q + 77 q - 12 q - 41 q + q 9 11 12 13 14 15 > 34 q - 16 q + 9 q + q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1043 |
|