© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.41
1041
10.43
1043
    10.42
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 1042   

Visit 1042's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 1042's page at Knotilus!

Acknowledgement

10.42
KnotPlot

PD Presentation: X1425 X3,10,4,11 X11,1,12,20 X5,13,6,12 X15,18,16,19 X13,9,14,8 X17,7,18,6 X7,17,8,16 X19,14,20,15 X9,2,10,3

Gauss Code: {-1, 10, -2, 1, -4, 7, -8, 6, -10, 2, -3, 4, -6, 9, -5, 8, -7, 5, -9, 3}

DT (Dowker-Thistlethwaite) Code: 4 10 12 16 2 20 8 18 6 14

Minimum Braid Representative:


Length is 10, width is 5
Braid index is 5

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 1 3 2 / NotAvailable 1

Alexander Polynomial: - t-3 + 7t-2 - 19t-1 + 27 - 19t + 7t2 - t3

Conway Polynomial: 1 + z4 - z6

Other knots with the same Alexander/Conway Polynomial: {1075, ...}

Determinant and Signature: {81, 0}

Jones Polynomial: - q-5 + 4q-4 - 7q-3 + 10q-2 - 13q-1 + 14 - 12q + 10q2 - 6q3 + 3q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-16 + q-14 + 2q-12 - 2q-10 + 2q-8 - q-6 - 2q-4 + 2q-2 - 2 + 3q2 - q4 + q6 + 3q8 - 2q10 + q12 - q16

HOMFLY-PT Polynomial: - a-4 - a-4z2 + 3a-2 + 4a-2z2 + 2a-2z4 - 2 - 5z2 - 3z4 - z6 + a2 + 3a2z2 + 2a2z4 - a4z2

Kauffman Polynomial: a-5z - 2a-5z3 + a-5z5 - a-4 + 4a-4z2 - 6a-4z4 + 3a-4z6 + a-3z - 5a-3z5 + 4a-3z7 - 3a-2 + 9a-2z2 - 11a-2z4 + 2a-2z6 + 3a-2z8 - a-1z + 10a-1z3 - 18a-1z5 + 9a-1z7 + a-1z9 - 2 + 9z2 - 8z4 - 5z6 + 7z8 - az + 14az3 - 24az5 + 11az7 + az9 - a2 + 6a2z2 - 10a2z4 + 4a2z8 + 5a3z3 - 11a3z5 + 6a3z7 + 2a4z2 - 7a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1042. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11          1
j = 9         2 
j = 7        41 
j = 5       62  
j = 3      64   
j = 1     86    
j = -1    67     
j = -3   47      
j = -5  36       
j = -7 14        
j = -9 3         
j = -111          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-15 - 4q-14 + 2q-13 + 13q-12 - 23q-11 - 2q-10 + 49q-9 - 53q-8 - 23q-7 + 105q-6 - 77q-5 - 59q-4 + 155q-3 - 82q-2 - 92q-1 + 171 - 64q - 102q2 + 142q3 - 33q4 - 83q5 + 87q6 - 8q7 - 47q8 + 36q9 + q10 - 17q11 + 9q12 + q13 - 3q14 + q15
3 - q-30 + 4q-29 - 2q-28 - 8q-27 + 22q-25 + 8q-24 - 50q-23 - 21q-22 + 80q-21 + 62q-20 - 125q-19 - 123q-18 + 162q-17 + 221q-16 - 194q-15 - 338q-14 + 197q-13 + 478q-12 - 176q-11 - 621q-10 + 130q-9 + 750q-8 - 58q-7 - 861q-6 - 22q-5 + 933q-4 + 111q-3 - 966q-2 - 201q-1 + 965 + 269q - 901q2 - 342q3 + 820q4 + 372q5 - 686q6 - 398q7 + 556q8 + 373q9 - 402q10 - 343q11 + 281q12 + 276q13 - 169q14 - 213q15 + 96q16 + 147q17 - 48q18 - 92q19 + 20q20 + 54q21 - 8q22 - 28q23 + 2q24 + 14q25 - 2q26 - 4q27 - q28 + 3q29 - q30
4 q-50 - 4q-49 + 2q-48 + 8q-47 - 5q-46 + q-45 - 28q-44 + 10q-43 + 51q-42 - 5q-41 + 7q-40 - 138q-39 - 12q-38 + 180q-37 + 75q-36 + 77q-35 - 428q-34 - 201q-33 + 355q-32 + 370q-31 + 436q-30 - 882q-29 - 791q-28 + 311q-27 + 896q-26 + 1390q-25 - 1195q-24 - 1814q-23 - 344q-22 + 1333q-21 + 2990q-20 - 935q-19 - 2915q-18 - 1695q-17 + 1257q-16 + 4813q-15 + 2q-14 - 3599q-13 - 3343q-12 + 567q-11 + 6272q-10 + 1273q-9 - 3651q-8 - 4735q-7 - 472q-6 + 6992q-5 + 2454q-4 - 3141q-3 - 5539q-2 - 1547q-1 + 6874 + 3290q - 2202q2 - 5610q3 - 2472q4 + 5911q5 + 3638q6 - 964q7 - 4903q8 - 3068q9 + 4275q10 + 3362q11 + 252q12 - 3536q13 - 3080q14 + 2420q15 + 2480q16 + 1001q17 - 1952q18 - 2441q19 + 962q20 + 1355q21 + 1067q22 - 730q23 - 1479q24 + 220q25 + 487q26 + 698q27 - 135q28 - 675q29 + 21q30 + 79q31 + 311q32 + 19q33 - 238q34 + 10q35 - 17q36 + 101q37 + 19q38 - 70q39 + 12q40 - 13q41 + 24q42 + 6q43 - 17q44 + 5q45 - 3q46 + 4q47 + q48 - 3q49 + q50
5 - q-75 + 4q-74 - 2q-73 - 8q-72 + 5q-71 + 4q-70 + 5q-69 + 10q-68 - 11q-67 - 42q-66 - 9q-65 + 40q-64 + 59q-63 + 52q-62 - 43q-61 - 157q-60 - 147q-59 + 66q-58 + 297q-57 + 304q-56 + 9q-55 - 466q-54 - 684q-53 - 216q-52 + 709q-51 + 1213q-50 + 673q-49 - 747q-48 - 2023q-47 - 1635q-46 + 616q-45 + 2946q-44 + 3072q-43 + 175q-42 - 3838q-41 - 5196q-40 - 1692q-39 + 4377q-38 + 7722q-37 + 4304q-36 - 4214q-35 - 10516q-34 - 7882q-33 + 2967q-32 + 13096q-31 + 12393q-30 - 508q-29 - 15097q-28 - 17379q-27 - 3187q-26 + 16124q-25 + 22452q-24 + 7881q-23 - 16043q-22 - 27139q-21 - 13144q-20 + 14857q-19 + 31012q-18 + 18600q-17 - 12724q-16 - 33989q-15 - 23743q-14 + 9991q-13 + 35842q-12 + 28326q-11 - 6833q-10 - 36748q-9 - 32176q-8 + 3586q-7 + 36751q-6 + 35133q-5 - 297q-4 - 35844q-3 - 37344q-2 - 3005q-1 + 34306 + 38607q + 6170q2 - 31716q3 - 39128q4 - 9407q5 + 28556q6 + 38592q7 + 12329q8 - 24325q9 - 37109q10 - 15088q11 + 19693q12 + 34404q13 + 17093q14 - 14368q15 - 30748q16 - 18367q17 + 9281q18 + 26052q19 + 18430q20 - 4338q21 - 20927q22 - 17499q23 + 515q24 + 15569q25 + 15418q26 + 2413q27 - 10675q28 - 12778q29 - 3918q30 + 6524q31 + 9727q32 + 4446q33 - 3399q34 - 6891q35 - 4089q36 + 1336q37 + 4448q38 + 3295q39 - 174q40 - 2609q41 - 2369q42 - 335q43 + 1390q44 + 1525q45 + 441q46 - 652q47 - 895q48 - 362q49 + 268q50 + 472q51 + 247q52 - 94q53 - 246q54 - 123q55 + 32q56 + 92q57 + 76q58 - 4q59 - 61q60 - 22q61 + 15q62 + 5q63 + 14q64 + 6q65 - 19q66 - 2q67 + 9q68 - 2q69 + 3q71 - 4q72 - q73 + 3q74 - q75
6 q-105 - 4q-104 + 2q-103 + 8q-102 - 5q-101 - 4q-100 - 10q-99 + 13q-98 - 9q-97 + 2q-96 + 56q-95 - 21q-94 - 34q-93 - 70q-92 + 25q-91 - 11q-90 + 38q-89 + 245q-88 + 3q-87 - 128q-86 - 345q-85 - 75q-84 - 135q-83 + 171q-82 + 912q-81 + 411q-80 - 105q-79 - 1118q-78 - 816q-77 - 1059q-76 + 73q-75 + 2525q-74 + 2351q-73 + 1254q-72 - 1956q-71 - 2949q-70 - 4827q-69 - 2360q-68 + 4257q-67 + 7283q-66 + 7282q-65 + 502q-64 - 5111q-63 - 13760q-62 - 12270q-61 + 829q-60 + 13322q-59 + 21341q-58 + 13729q-57 + 233q-56 - 25159q-55 - 34183q-54 - 17987q-53 + 10400q-52 + 39656q-51 + 43531q-50 + 25938q-49 - 26233q-48 - 63031q-47 - 58887q-46 - 16736q-45 + 46746q-44 + 83485q-43 + 78817q-42 + 89q-41 - 80950q-40 - 113579q-39 - 74446q-38 + 24490q-37 + 113814q-36 + 148227q-35 + 59047q-34 - 69449q-33 - 160412q-32 - 149949q-31 - 30797q-30 + 116148q-29 + 210884q-28 + 136032q-27 - 26187q-26 - 181014q-25 - 219323q-24 - 103404q-23 + 88868q-22 + 248492q-21 + 207469q-20 + 33490q-19 - 173522q-18 - 265266q-17 - 171321q-16 + 45577q-15 + 258526q-14 + 257811q-13 + 90808q-12 - 148659q-11 - 285311q-10 - 221687q-9 + 851q-8 + 248726q-7 + 285172q-6 + 136678q-5 - 116420q-4 - 285199q-3 - 253840q-2 - 40151q-1 + 225157 + 293833q + 172140q2 - 78381q3 - 268101q4 - 271004q5 - 79907q6 + 186735q7 + 284430q8 + 199336q9 - 31288q10 - 230869q11 - 271255q12 - 118981q13 + 130253q14 + 251697q15 + 213252q16 + 22996q17 - 170374q18 - 246790q19 - 148641q20 + 60606q21 + 192258q22 + 202829q23 + 71254q24 - 94056q25 - 193435q26 - 154179q27 - 4531q28 + 115410q29 + 162497q30 + 95027q31 - 22705q32 - 121598q33 - 128648q34 - 43908q35 + 43737q36 + 103029q37 + 86415q38 + 21699q39 - 54530q40 - 83078q41 - 49786q42 - 1478q43 + 47214q44 + 56719q45 + 33120q46 - 11906q47 - 39308q48 - 33986q49 - 16249q50 + 12367q51 + 26411q52 + 24111q53 + 4104q54 - 12243q55 - 15336q56 - 13020q57 - 883q58 + 8038q59 + 11604q60 + 4993q61 - 1677q62 - 4255q63 - 6126q64 - 2506q65 + 1120q66 + 3991q67 + 2247q68 + 400q69 - 386q70 - 1957q71 - 1234q72 - 247q73 + 1074q74 + 558q75 + 226q76 + 246q77 - 452q78 - 357q79 - 188q80 + 278q81 + 58q82 + 12q83 + 142q84 - 82q85 - 70q86 - 60q87 + 86q88 - 10q89 - 24q90 + 43q91 - 15q92 - 8q93 - 16q94 + 26q95 - 3q96 - 13q97 + 10q98 - 3q99 - 3q101 + 4q102 + q103 - 3q104 + q105
7 - q-140 + 4q-139 - 2q-138 - 8q-137 + 5q-136 + 4q-135 + 10q-134 - 8q-133 - 14q-132 + 18q-131 - 16q-130 - 26q-129 + 15q-128 + 28q-127 + 66q-126 - 84q-124 + 2q-123 - 86q-122 - 93q-121 + 50q-120 + 104q-119 + 342q-118 + 168q-117 - 196q-116 - 192q-115 - 511q-114 - 489q-113 - 12q-112 + 311q-111 + 1253q-110 + 1254q-109 + 206q-108 - 475q-107 - 2048q-106 - 2493q-105 - 1432q-104 - 87q-103 + 3349q-102 + 5180q-101 + 3948q-100 + 1471q-99 - 4379q-98 - 8679q-97 - 8804q-96 - 6076q-95 + 3750q-94 + 13498q-93 + 17365q-92 + 15060q-91 + 333q-90 - 17206q-89 - 28858q-88 - 31391q-87 - 12917q-86 + 16682q-85 + 43145q-84 + 56669q-83 + 37019q-82 - 6172q-81 - 54219q-80 - 90031q-79 - 78691q-78 - 22760q-77 + 56006q-76 + 128257q-75 + 138478q-74 + 76965q-73 - 36153q-72 - 161283q-71 - 215248q-70 - 163584q-69 - 16501q-68 + 176997q-67 + 299690q-66 + 282537q-65 + 113143q-64 - 158524q-63 - 378044q-62 - 428329q-61 - 258616q-60 + 91177q-59 + 431464q-58 + 587036q-57 + 450853q-56 + 35159q-55 - 441543q-54 - 739167q-53 - 677958q-52 - 222568q-51 + 393030q-50 + 863573q-49 + 921634q-48 + 463105q-47 - 279709q-46 - 941446q-45 - 1158720q-44 - 740119q-43 + 104171q-42 + 960514q-41 + 1367720q-40 + 1031950q-39 + 121088q-38 - 918421q-37 - 1531842q-36 - 1314951q-35 - 376909q-34 + 820823q-33 + 1641511q-32 + 1569865q-31 + 642729q-30 - 681338q-29 - 1697143q-28 - 1782938q-27 - 897664q-26 + 516567q-25 + 1703789q-24 + 1948019q-23 + 1128311q-22 - 342493q-21 - 1673538q-20 - 2066590q-19 - 1325047q-18 + 173080q-17 + 1617049q-16 + 2143372q-15 + 1486754q-14 - 15206q-13 - 1544878q-12 - 2187595q-11 - 1616309q-10 - 127526q-9 + 1463840q-8 + 2205824q-7 + 1718961q-6 + 258317q-5 - 1374811q-4 - 2204147q-3 - 1802949q-2 - 381868q-1 + 1277658 + 2183982q + 1870844q2 + 504543q3 - 1164334q4 - 2143080q5 - 1927208q6 - 631895q7 + 1031400q8 + 2076303q9 + 1966588q10 + 765068q11 - 870106q12 - 1975202q13 - 1985471q14 - 902127q15 + 680777q16 + 1833493q17 + 1971461q18 + 1034026q19 - 463543q20 - 1645792q21 - 1916400q22 - 1149070q23 + 230043q24 + 1413656q25 + 1809274q26 + 1231458q27 + 6973q28 - 1144652q29 - 1649021q30 - 1266872q31 - 225537q32 + 854364q33 + 1436582q34 + 1245076q35 + 408420q36 - 563742q37 - 1187158q38 - 1163497q39 - 535701q40 + 296158q41 + 916785q42 + 1028201q43 + 601272q44 - 72082q45 - 651727q46 - 854811q47 - 602378q48 - 93172q49 + 411680q50 + 662844q51 + 551107q52 + 195751q53 - 215963q54 - 475372q55 - 462581q56 - 239009q57 + 72475q58 + 309554q59 + 357199q60 + 236472q61 + 18404q62 - 178244q63 - 252925q64 - 203636q65 - 64195q66 + 84805q67 + 162762q68 + 157054q69 + 77235q70 - 26432q71 - 93765q72 - 109765q73 - 70303q74 - 3985q75 + 46745q76 + 69469q77 + 54408q78 + 15834q79 - 18405q80 - 39863q81 - 37372q82 - 16927q83 + 3910q84 + 20467q85 + 23059q86 + 13363q87 + 2078q88 - 9112q89 - 12907q90 - 8987q91 - 3579q92 + 3479q93 + 6668q94 + 5152q95 + 2958q96 - 857q97 - 2958q98 - 2711q99 - 2189q100 + 17q101 + 1409q102 + 1212q103 + 1122q104 + 176q105 - 399q106 - 431q107 - 760q108 - 187q109 + 265q110 + 169q111 + 258q112 + 38q113 - 9q114 + 37q115 - 197q116 - 77q117 + 66q118 + 13q119 + 44q120 - 26q121 + 53q123 - 42q124 - 21q125 + 16q126 + 2q127 + 10q128 - 16q129 - 4q130 + 18q131 - 6q132 - 5q133 + 3q134 + 3q136 - 4q137 - q138 + 3q139 - q140


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 42]]
Out[2]=   
PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 20], X[5, 13, 6, 12], 
 
>   X[15, 18, 16, 19], X[13, 9, 14, 8], X[17, 7, 18, 6], X[7, 17, 8, 16], 
 
>   X[19, 14, 20, 15], X[9, 2, 10, 3]]
In[3]:=
GaussCode[Knot[10, 42]]
Out[3]=   
GaussCode[-1, 10, -2, 1, -4, 7, -8, 6, -10, 2, -3, 4, -6, 9, -5, 8, -7, 5, -9, 
 
>   3]
In[4]:=
DTCode[Knot[10, 42]]
Out[4]=   
DTCode[4, 10, 12, 16, 2, 20, 8, 18, 6, 14]
In[5]:=
br = BR[Knot[10, 42]]
Out[5]=   
BR[5, {-1, -1, 2, -1, 2, -3, 2, 4, -3, 4}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{5, 10}
In[7]:=
BraidIndex[Knot[10, 42]]
Out[7]=   
5
In[8]:=
Show[DrawMorseLink[Knot[10, 42]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 42]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 1, 3, 2, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 42]][t]
Out[10]=   
      -3   7    19             2    3
27 - t   + -- - -- - 19 t + 7 t  - t
            2   t
           t
In[11]:=
Conway[Knot[10, 42]][z]
Out[11]=   
     4    6
1 + z  - z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 42], Knot[10, 75]}
In[13]:=
{KnotDet[Knot[10, 42]], KnotSignature[Knot[10, 42]]}
Out[13]=   
{81, 0}
In[14]:=
Jones[Knot[10, 42]][q]
Out[14]=   
      -5   4    7    10   13              2      3      4    5
14 - q   + -- - -- + -- - -- - 12 q + 10 q  - 6 q  + 3 q  - q
            4    3    2   q
           q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 42]}
In[16]:=
A2Invariant[Knot[10, 42]][q]
Out[16]=   
      -16    -14    2     2    2     -6   2    2       2    4    6      8
-2 - q    + q    + --- - --- + -- - q   - -- + -- + 3 q  - q  + q  + 3 q  - 
                    12    10    8          4    2
                   q     q     q          q    q
 
       10    12    16
>   2 q   + q   - q
In[17]:=
HOMFLYPT[Knot[10, 42]][a, z]
Out[17]=   
                             2      2                               4
      -4   3     2      2   z    4 z       2  2    4  2      4   2 z
-2 - a   + -- + a  - 5 z  - -- + ---- + 3 a  z  - a  z  - 3 z  + ---- + 
            2                4     2                               2
           a                a     a                               a
 
       2  4    6
>   2 a  z  - z
In[18]:=
Kauffman[Knot[10, 42]][a, z]
Out[18]=   
                                                   2      2
      -4   3     2   z    z    z            2   4 z    9 z       2  2
-2 - a   - -- - a  + -- + -- - - - a z + 9 z  + ---- + ---- + 6 a  z  + 
            2         5    3   a                  4      2
           a         a    a                      a      a
 
                 3       3                                         4       4
       4  2   2 z    10 z          3      3  3    5  3      4   6 z    11 z
>   2 a  z  - ---- + ----- + 14 a z  + 5 a  z  - a  z  - 8 z  - ---- - ----- - 
                5      a                                          4      2
               a                                                 a      a
 
                          5      5       5
        2  4      4  4   z    5 z    18 z          5       3  5    5  5
>   10 a  z  - 7 a  z  + -- - ---- - ----- - 24 a z  - 11 a  z  + a  z  - 
                          5     3      a
                         a     a
 
              6      6                7      7
       6   3 z    2 z       4  6   4 z    9 z          7      3  7      8
>   5 z  + ---- + ---- + 4 a  z  + ---- + ---- + 11 a z  + 6 a  z  + 7 z  + 
             4      2                3     a
            a      a                a
 
       8              9
    3 z       2  8   z       9
>   ---- + 4 a  z  + -- + a z
      2              a
     a
In[19]:=
{Vassiliev[2][Knot[10, 42]], Vassiliev[3][Knot[10, 42]]}
Out[19]=   
{0, 1}
In[20]:=
Kh[Knot[10, 42]][q, t]
Out[20]=   
7           1        3       1       4       3       6       4      7      6
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2    3     q t
          q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
               3        3  2      5  2      5  3      7  3    7  4      9  4
>   6 q t + 6 q  t + 4 q  t  + 6 q  t  + 2 q  t  + 4 q  t  + q  t  + 2 q  t  + 
 
     11  5
>   q   t
In[21]:=
ColouredJones[Knot[10, 42], 2][q]
Out[21]=   
       -15    4     2    13    23     2    49   53   23   105   77   59   155
171 + q    - --- + --- + --- - --- - --- + -- - -- - -- + --- - -- - -- + --- - 
              14    13    12    11    10    9    8    7    6     5    4    3
             q     q     q     q     q     q    q    q    q     q    q    q
 
    82   92               2        3       4       5       6      7       8
>   -- - -- - 64 q - 102 q  + 142 q  - 33 q  - 83 q  + 87 q  - 8 q  - 47 q  + 
     2   q
    q
 
        9    10       11      12    13      14    15
>   36 q  + q   - 17 q   + 9 q   + q   - 3 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1042
10.41
1041
10.43
1043