© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1040Visit 1040's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1040's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X11,1,12,20 X5,13,6,12 X7,17,8,16 X15,19,16,18 X19,15,20,14 X13,7,14,6 X17,9,18,8 X9,2,10,3 |
Gauss Code: | {-1, 10, -2, 1, -4, 8, -5, 9, -10, 2, -3, 4, -8, 7, -6, 5, -9, 6, -7, 3} |
DT (Dowker-Thistlethwaite) Code: | 4 10 12 16 2 20 6 18 8 14 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 8t-2 + 17t-1 - 21 + 17t - 8t2 + 2t3 |
Conway Polynomial: | 1 + 3z2 + 4z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {10103, ...} |
Determinant and Signature: | {75, 2} |
Jones Polynomial: | - q-2 + 3q-1 - 6 + 10q - 11q2 + 13q3 - 12q4 + 9q5 - 6q6 + 3q7 - q8 |
Other knots (up to mirrors) with the same Jones Polynomial: | {10103, ...} |
A2 (sl(3)) Invariant: | - q-6 + q-4 - q-2 - 1 + 3q2 - q4 + 4q6 + q8 + q12 - 3q14 + 2q16 - q18 - q20 + q22 - q24 |
HOMFLY-PT Polynomial: | - a-6 - 2a-6z2 - a-6z4 + 3a-4z2 + 3a-4z4 + a-4z6 + 3a-2 + 4a-2z2 + 3a-2z4 + a-2z6 - 1 - 2z2 - z4 |
Kauffman Polynomial: | a-9z - 2a-9z3 + a-9z5 + 3a-8z2 - 6a-8z4 + 3a-8z6 + 2a-7z3 - 6a-7z5 + 4a-7z7 + a-6 + a-6z2 - 5a-6z4 + 3a-6z8 + 6a-5z3 - 13a-5z5 + 7a-5z7 + a-5z9 + a-4z2 - 2a-4z4 - 5a-4z6 + 6a-4z8 + 2a-3z + 3a-3z3 - 12a-3z5 + 7a-3z7 + a-3z9 - 3a-2 + 7a-2z2 - 9a-2z4 + a-2z6 + 3a-2z8 + 2a-1z - a-1z3 - 5a-1z5 + 4a-1z7 - 1 + 4z2 - 6z4 + 3z6 + az - 2az3 + az5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, 4} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1040. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-7 - 3q-6 + q-5 + 9q-4 - 17q-3 + 37q-1 - 44 - 14q + 86q2 - 70q3 - 42q4 + 132q5 - 79q6 - 71q7 + 150q8 - 67q9 - 83q10 + 130q11 - 38q12 - 71q13 + 82q14 - 12q15 - 43q16 + 35q17 - 16q19 + 9q20 + q21 - 3q22 + q23 |
3 | - q-15 + 3q-14 - q-13 - 4q-12 - 2q-11 + 14q-10 + 3q-9 - 29q-8 - 11q-7 + 54q-6 + 30q-5 - 88q-4 - 70q-3 + 131q-2 + 132q-1 - 173 - 216q + 196q2 + 336q3 - 218q4 - 445q5 + 195q6 + 580q7 - 177q8 - 669q9 + 110q10 + 768q11 - 66q12 - 803q13 - 14q14 + 828q15 + 69q16 - 796q17 - 138q18 + 741q19 + 191q20 - 653q21 - 225q22 + 536q23 + 247q24 - 417q25 - 240q26 + 296q27 + 216q28 - 194q29 - 173q30 + 111q31 + 129q32 - 59q33 - 83q34 + 25q35 + 50q36 - 10q37 - 26q38 + 3q39 + 13q40 - 2q41 - 4q42 - q43 + 3q44 - q45 |
4 | q-26 - 3q-25 + q-24 + 4q-23 - 3q-22 + 5q-21 - 17q-20 + 5q-19 + 25q-18 - 10q-17 + 12q-16 - 74q-15 + 7q-14 + 103q-13 + 9q-12 + 32q-11 - 252q-10 - 58q-9 + 268q-8 + 167q-7 + 171q-6 - 634q-5 - 371q-4 + 423q-3 + 583q-2 + 675q-1 - 1120 - 1103q + 264q2 + 1165q3 + 1758q4 - 1372q5 - 2156q6 - 456q7 + 1578q8 + 3258q9 - 1107q10 - 3121q11 - 1621q12 + 1538q13 + 4702q14 - 395q15 - 3639q16 - 2814q17 + 1077q18 + 5652q19 + 459q20 - 3610q21 - 3674q22 + 385q23 + 5924q24 + 1222q25 - 3094q26 - 4043q27 - 399q28 + 5480q29 + 1794q30 - 2167q31 - 3872q32 - 1153q33 + 4381q34 + 2039q35 - 1014q36 - 3136q37 - 1646q38 + 2866q39 + 1818q40 + q41 - 2023q42 - 1648q43 + 1425q44 + 1203q45 + 510q46 - 945q47 - 1190q48 + 486q49 + 534q50 + 498q51 - 271q52 - 616q53 + 105q54 + 125q55 + 268q56 - 24q57 - 230q58 + 24q59 - 4q60 + 93q61 + 11q62 - 66q63 + 14q64 - 12q65 + 22q66 + 5q67 - 16q68 + 5q69 - 3q70 + 4q71 + q72 - 3q73 + q74 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 40]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 20], X[5, 13, 6, 12], > X[7, 17, 8, 16], X[15, 19, 16, 18], X[19, 15, 20, 14], X[13, 7, 14, 6], > X[17, 9, 18, 8], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[10, 40]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 8, -5, 9, -10, 2, -3, 4, -8, 7, -6, 5, -9, 6, -7, > 3] |
In[4]:= | DTCode[Knot[10, 40]] |
Out[4]= | DTCode[4, 10, 12, 16, 2, 20, 6, 18, 8, 14] |
In[5]:= | br = BR[Knot[10, 40]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, 2, 2, -3, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 40]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 40]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 40]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 40]][t] |
Out[10]= | 2 8 17 2 3 -21 + -- - -- + -- + 17 t - 8 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 40]][z] |
Out[11]= | 2 4 6 1 + 3 z + 4 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 40], Knot[10, 103]} |
In[13]:= | {KnotDet[Knot[10, 40]], KnotSignature[Knot[10, 40]]} |
Out[13]= | {75, 2} |
In[14]:= | Jones[Knot[10, 40]][q] |
Out[14]= | -2 3 2 3 4 5 6 7 8 -6 - q + - + 10 q - 11 q + 13 q - 12 q + 9 q - 6 q + 3 q - q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 40], Knot[10, 103]} |
In[16]:= | A2Invariant[Knot[10, 40]][q] |
Out[16]= | -6 -4 -2 2 4 6 8 12 14 16 18 -1 - q + q - q + 3 q - q + 4 q + q + q - 3 q + 2 q - q - 20 22 24 > q + q - q |
In[17]:= | HOMFLYPT[Knot[10, 40]][a, z] |
Out[17]= | 2 2 2 4 4 4 6 6 -6 3 2 2 z 3 z 4 z 4 z 3 z 3 z z z -1 - a + -- - 2 z - ---- + ---- + ---- - z - -- + ---- + ---- + -- + -- 2 6 4 2 6 4 2 4 2 a a a a a a a a a |
In[18]:= | Kauffman[Knot[10, 40]][a, z] |
Out[18]= | 2 2 2 2 3 -6 3 z 2 z 2 z 2 3 z z z 7 z 2 z -1 + a - -- + -- + --- + --- + a z + 4 z + ---- + -- + -- + ---- - ---- + 2 9 3 a 8 6 4 2 9 a a a a a a a a 3 3 3 3 4 4 4 4 5 2 z 6 z 3 z z 3 4 6 z 5 z 2 z 9 z z > ---- + ---- + ---- - -- - 2 a z - 6 z - ---- - ---- - ---- - ---- + -- - 7 5 3 a 8 6 4 2 9 a a a a a a a a 5 5 5 5 6 6 6 7 6 z 13 z 12 z 5 z 5 6 3 z 5 z z 4 z > ---- - ----- - ----- - ---- + a z + 3 z + ---- - ---- + -- + ---- + 7 5 3 a 8 4 2 7 a a a a a a a 7 7 7 8 8 8 9 9 7 z 7 z 4 z 3 z 6 z 3 z z z > ---- + ---- + ---- + ---- + ---- + ---- + -- + -- 5 3 a 6 4 2 5 3 a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 40]], Vassiliev[3][Knot[10, 40]]} |
Out[19]= | {3, 4} |
In[20]:= | Kh[Knot[10, 40]][q, t] |
Out[20]= | 3 1 2 1 4 2 q 3 5 5 2 6 q + 5 q + ----- + ----- + ---- + --- + --- + 6 q t + 5 q t + 7 q t + 5 3 3 2 2 q t t q t q t q t 7 2 7 3 9 3 9 4 11 4 11 5 13 5 > 6 q t + 5 q t + 7 q t + 4 q t + 5 q t + 2 q t + 4 q t + 13 6 15 6 17 7 > q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 40], 2][q] |
Out[21]= | -7 3 -5 9 17 37 2 3 4 5 -44 + q - -- + q + -- - -- + -- - 14 q + 86 q - 70 q - 42 q + 132 q - 6 4 3 q q q q 6 7 8 9 10 11 12 13 > 79 q - 71 q + 150 q - 67 q - 83 q + 130 q - 38 q - 71 q + 14 15 16 17 19 20 21 22 23 > 82 q - 12 q - 43 q + 35 q - 16 q + 9 q + q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1040 |
|