© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1039Visit 1039's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1039's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X9,18,10,19 X15,20,16,1 X19,16,20,17 X13,6,14,7 X17,8,18,9 |
Gauss Code: | {-1, 4, -3, 1, -2, 9, -5, 10, -6, 3, -4, 2, -9, 5, -7, 8, -10, 6, -8, 7} |
DT (Dowker-Thistlethwaite) Code: | 4 10 12 14 18 2 6 20 8 16 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 8t-2 - 13t-1 + 15 - 13t + 8t2 - 2t3 |
Conway Polynomial: | 1 + z2 - 4z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {61, -4} |
Jones Polynomial: | q-10 - 3q-9 + 5q-8 - 8q-7 + 10q-6 - 10q-5 + 9q-4 - 7q-3 + 5q-2 - 2q-1 + 1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-30 - q-28 - 2q-22 + 2q-20 - q-18 + q-16 - 2q-12 + 2q-10 - q-8 + 2q-6 + q-4 + 1 |
HOMFLY-PT Polynomial: | 2a2 + 3a2z2 + a2z4 - a4 - 2a4z2 - 3a4z4 - a4z6 - 2a6z2 - 3a6z4 - a6z6 + 2a8z2 + a8z4 |
Kauffman Polynomial: | - 2a2 + 5a2z2 - 4a2z4 + a2z6 + 4a3z3 - 6a3z5 + 2a3z7 - a4 + 5a4z2 - 4a4z4 - 3a4z6 + 2a4z8 - a5z + 5a5z3 - 9a5z5 + 2a5z7 + a5z9 - a6z2 + 5a6z4 - 10a6z6 + 5a6z8 + 4a7z3 - 9a7z5 + 4a7z7 + a7z9 + a8z2 - 2a8z6 + 3a8z8 + 2a9z - a9z3 - 3a9z5 + 4a9z7 + a10z2 - 4a10z4 + 4a10z6 + a11z - 4a11z3 + 3a11z5 - a12z2 + a12z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 1039. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-28 - 3q-27 + q-26 + 7q-25 - 13q-24 + 5q-23 + 20q-22 - 36q-21 + 10q-20 + 44q-19 - 64q-18 + 10q-17 + 69q-16 - 79q-15 + q-14 + 79q-13 - 72q-12 - 11q-11 + 72q-10 - 49q-9 - 19q-8 + 51q-7 - 22q-6 - 18q-5 + 25q-4 - 5q-3 - 9q-2 + 7q-1 - 2q + q2 |
3 | q-54 - 3q-53 + q-52 + 3q-51 + 2q-50 - 8q-49 - q-48 + 13q-47 - 3q-46 - 20q-45 + 7q-44 + 38q-43 - 20q-42 - 60q-41 + 30q-40 + 100q-39 - 45q-38 - 144q-37 + 46q-36 + 203q-35 - 47q-34 - 253q-33 + 32q-32 + 297q-31 - 7q-30 - 329q-29 - 19q-28 + 339q-27 + 52q-26 - 336q-25 - 82q-24 + 314q-23 + 114q-22 - 284q-21 - 138q-20 + 239q-19 + 160q-18 - 193q-17 - 164q-16 + 133q-15 + 168q-14 - 88q-13 - 146q-12 + 37q-11 + 126q-10 - 10q-9 - 87q-8 - 17q-7 + 65q-6 + 16q-5 - 32q-4 - 20q-3 + 19q-2 + 11q-1 - 6 - 8q + 4q2 + 2q3 - 2q5 + q6 |
4 | q-88 - 3q-87 + q-86 + 3q-85 - 2q-84 + 7q-83 - 14q-82 + 3q-81 + 7q-80 - 12q-79 + 29q-78 - 31q-77 + 15q-76 + 11q-75 - 55q-74 + 55q-73 - 42q-72 + 76q-71 + 33q-70 - 171q-69 + 30q-68 - 57q-67 + 253q-66 + 148q-65 - 369q-64 - 139q-63 - 153q-62 + 565q-61 + 454q-60 - 551q-59 - 468q-58 - 443q-57 + 890q-56 + 946q-55 - 571q-54 - 812q-53 - 901q-52 + 1043q-51 + 1424q-50 - 390q-49 - 968q-48 - 1351q-47 + 956q-46 + 1687q-45 - 115q-44 - 889q-43 - 1623q-42 + 709q-41 + 1677q-40 + 152q-39 - 637q-38 - 1690q-37 + 377q-36 + 1456q-35 + 383q-34 - 284q-33 - 1581q-32 + 10q-31 + 1074q-30 + 544q-29 + 113q-28 - 1298q-27 - 302q-26 + 589q-25 + 548q-24 + 444q-23 - 854q-22 - 433q-21 + 125q-20 + 364q-19 + 571q-18 - 384q-17 - 338q-16 - 145q-15 + 104q-14 + 453q-13 - 68q-12 - 136q-11 - 176q-10 - 59q-9 + 234q-8 + 31q-7 - q-6 - 88q-5 - 76q-4 + 77q-3 + 17q-2 + 26q-1 - 21 - 36q + 19q2 + 11q4 - 2q5 - 10q6 + 5q7 - q8 + 2q9 - 2q11 + q12 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 39]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], > X[7, 14, 8, 15], X[9, 18, 10, 19], X[15, 20, 16, 1], X[19, 16, 20, 17], > X[13, 6, 14, 7], X[17, 8, 18, 9]] |
In[3]:= | GaussCode[Knot[10, 39]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 9, -5, 10, -6, 3, -4, 2, -9, 5, -7, 8, -10, 6, -8, > 7] |
In[4]:= | DTCode[Knot[10, 39]] |
Out[4]= | DTCode[4, 10, 12, 14, 18, 2, 6, 20, 8, 16] |
In[5]:= | br = BR[Knot[10, 39]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, -2, -2, -2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 39]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 39]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 39]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 39]][t] |
Out[10]= | 2 8 13 2 3 15 - -- + -- - -- - 13 t + 8 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 39]][z] |
Out[11]= | 2 4 6 1 + z - 4 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 39]} |
In[13]:= | {KnotDet[Knot[10, 39]], KnotSignature[Knot[10, 39]]} |
Out[13]= | {61, -4} |
In[14]:= | Jones[Knot[10, 39]][q] |
Out[14]= | -10 3 5 8 10 10 9 7 5 2 1 + q - -- + -- - -- + -- - -- + -- - -- + -- - - 9 8 7 6 5 4 3 2 q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 39]} |
In[16]:= | A2Invariant[Knot[10, 39]][q] |
Out[16]= | -30 -28 2 2 -18 -16 2 2 -8 2 -4 1 + q - q - --- + --- - q + q - --- + --- - q + -- + q 22 20 12 10 6 q q q q q |
In[17]:= | HOMFLYPT[Knot[10, 39]][a, z] |
Out[17]= | 2 4 2 2 4 2 6 2 8 2 2 4 4 4 6 4 2 a - a + 3 a z - 2 a z - 2 a z + 2 a z + a z - 3 a z - 3 a z + 8 4 4 6 6 6 > a z - a z - a z |
In[18]:= | Kauffman[Knot[10, 39]][a, z] |
Out[18]= | 2 4 5 9 11 2 2 4 2 6 2 8 2 -2 a - a - a z + 2 a z + a z + 5 a z + 5 a z - a z + a z + 10 2 12 2 3 3 5 3 7 3 9 3 11 3 > a z - a z + 4 a z + 5 a z + 4 a z - a z - 4 a z - 2 4 4 4 6 4 10 4 12 4 3 5 5 5 > 4 a z - 4 a z + 5 a z - 4 a z + a z - 6 a z - 9 a z - 7 5 9 5 11 5 2 6 4 6 6 6 8 6 > 9 a z - 3 a z + 3 a z + a z - 3 a z - 10 a z - 2 a z + 10 6 3 7 5 7 7 7 9 7 4 8 6 8 > 4 a z + 2 a z + 2 a z + 4 a z + 4 a z + 2 a z + 5 a z + 8 8 5 9 7 9 > 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 39]], Vassiliev[3][Knot[10, 39]]} |
Out[19]= | {1, -1} |
In[20]:= | Kh[Knot[10, 39]][q, t] |
Out[20]= | 2 4 1 2 1 3 2 5 3 -- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 5 3 21 8 19 7 17 7 17 6 15 6 15 5 13 5 q q q t q t q t q t q t q t q t 5 5 5 5 4 5 3 4 t t > ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + -- + - + 13 4 11 4 11 3 9 3 9 2 7 2 7 5 3 q q t q t q t q t q t q t q t q t q 2 > q t |
In[21]:= | ColouredJones[Knot[10, 39], 2][q] |
Out[21]= | -28 3 -26 7 13 5 20 36 10 44 64 10 69 q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + --- + --- - 27 25 24 23 22 21 20 19 18 17 16 q q q q q q q q q q q 79 -14 79 72 11 72 49 19 51 22 18 25 5 > --- + q + --- - --- - --- + --- - -- - -- + -- - -- - -- + -- - -- - 15 13 12 11 10 9 8 7 6 5 4 3 q q q q q q q q q q q q 9 7 2 > -- + - - 2 q + q 2 q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1039 |
|