© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1028Visit 1028's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1028's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X13,19,14,18 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X11,1,12,20 X19,13,20,12 X9,2,10,3 |
Gauss Code: | {-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, -8, 9, -3, 4, -7, 6, -5, 3, -9, 8} |
DT (Dowker-Thistlethwaite) Code: | 4 10 14 16 2 20 18 8 6 12 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 4t-2 - 13t-1 + 19 - 13t + 4t2 |
Conway Polynomial: | 1 + 3z2 + 4z4 |
Other knots with the same Alexander/Conway Polynomial: | {1037, ...} |
Determinant and Signature: | {53, 0} |
Jones Polynomial: | - q-3 + 3q-2 - 5q-1 + 7 - 8q + 9q2 - 7q3 + 6q4 - 4q5 + 2q6 - q7 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-10 + q-8 + q-6 - 2q-4 + q-2 - 1 + 2q4 + q6 + 3q8 + q14 - 2q16 - q22 |
HOMFLY-PT Polynomial: | - a-6 - a-6z2 + a-4z2 + a-4z4 + 3a-2 + 4a-2z2 + 2a-2z4 - 1 + z4 - a2z2 |
Kauffman Polynomial: | - 4a-7z + 8a-7z3 - 5a-7z5 + a-7z7 + a-6 - 5a-6z2 + 12a-6z4 - 9a-6z6 + 2a-6z8 - 6a-5z + 18a-5z3 - 12a-5z5 + a-5z9 + 11a-4z4 - 16a-4z6 + 5a-4z8 - 2a-3z + 13a-3z3 - 18a-3z5 + 4a-3z7 + a-3z9 - 3a-2 + 10a-2z2 - 12a-2z4 - a-2z6 + 3a-2z8 + a-1z - 2a-1z3 - 6a-1z5 + 5a-1z7 - 1 + 4z2 - 8z4 + 6z6 + az - 4az3 + 5az5 - a2z2 + 3a2z4 + a3z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, 4} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1028. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-9 - 3q-8 + 2q-7 + 5q-6 - 13q-5 + 9q-4 + 10q-3 - 28q-2 + 21q-1 + 15 - 44q + 29q2 + 23q3 - 54q4 + 26q5 + 32q6 - 53q7 + 16q8 + 34q9 - 41q10 + 4q11 + 29q12 - 24q13 - 4q14 + 18q15 - 9q16 - 5q17 + 7q18 - q19 - 2q20 + q21 |
3 | - q-18 + 3q-17 - 2q-16 - 2q-15 + q-14 + 6q-13 - 4q-12 - 9q-11 + 9q-10 + 8q-9 - 13q-8 - 9q-7 + 24q-6 + 3q-5 - 34q-4 + 2q-3 + 50q-2 - 10q-1 - 65 + 11q + 87q2 - 14q3 - 96q4 + 112q6 + 9q7 - 107q8 - 35q9 + 112q10 + 44q11 - 92q12 - 71q13 + 87q14 + 75q15 - 63q16 - 91q17 + 51q18 + 90q19 - 28q20 - 90q21 + 9q22 + 83q23 + 8q24 - 70q25 - 23q26 + 55q27 + 29q28 - 34q29 - 34q30 + 21q31 + 26q32 - 5q33 - 21q34 + 11q36 + 4q37 - 6q38 - 2q39 + q40 + 2q41 - q42 |
4 | q-30 - 3q-29 + 2q-28 + 2q-27 - 4q-26 + 6q-25 - 11q-24 + 9q-23 + 4q-22 - 14q-21 + 23q-20 - 30q-19 + 16q-18 + 4q-17 - 26q-16 + 64q-15 - 56q-14 + 7q-13 - 14q-12 - 29q-11 + 151q-10 - 79q-9 - 42q-8 - 73q-7 - 22q-6 + 302q-5 - 68q-4 - 127q-3 - 195q-2 - 38q-1 + 492 + 4q - 182q2 - 349q3 - 126q4 + 627q5 + 116q6 - 139q7 - 446q8 - 261q9 + 630q10 + 182q11 - 12q12 - 418q13 - 371q14 + 518q15 + 167q16 + 121q17 - 306q18 - 415q19 + 367q20 + 103q21 + 220q22 - 172q23 - 409q24 + 213q25 + 30q26 + 284q27 - 39q28 - 360q29 + 69q30 - 59q31 + 299q32 + 88q33 - 256q34 - 31q35 - 159q36 + 234q37 + 169q38 - 105q39 - 45q40 - 225q41 + 104q42 + 160q43 + 23q44 + 16q45 - 200q46 - 12q47 + 74q48 + 62q49 + 75q50 - 107q51 - 47q52 - 4q53 + 28q54 + 72q55 - 26q56 - 22q57 - 23q58 - 5q59 + 33q60 + q61 - 9q63 - 8q64 + 7q65 + q66 + 2q67 - q68 - 2q69 + q70 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 28]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[13, 19, 14, 18], X[5, 15, 6, 14], > X[17, 7, 18, 6], X[7, 17, 8, 16], X[15, 9, 16, 8], X[11, 1, 12, 20], > X[19, 13, 20, 12], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[10, 28]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, -8, 9, -3, 4, -7, 6, -5, 3, -9, > 8] |
In[4]:= | DTCode[Knot[10, 28]] |
Out[4]= | DTCode[4, 10, 14, 16, 2, 20, 18, 8, 6, 12] |
In[5]:= | br = BR[Knot[10, 28]] |
Out[5]= | BR[5, {1, 1, 2, -1, 2, 2, 3, -2, -4, 3, -4, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 28]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 28]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 28]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 28]][t] |
Out[10]= | 4 13 2 19 + -- - -- - 13 t + 4 t 2 t t |
In[11]:= | Conway[Knot[10, 28]][z] |
Out[11]= | 2 4 1 + 3 z + 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 28], Knot[10, 37]} |
In[13]:= | {KnotDet[Knot[10, 28]], KnotSignature[Knot[10, 28]]} |
Out[13]= | {53, 0} |
In[14]:= | Jones[Knot[10, 28]][q] |
Out[14]= | -3 3 5 2 3 4 5 6 7 7 - q + -- - - - 8 q + 9 q - 7 q + 6 q - 4 q + 2 q - q 2 q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 28]} |
In[16]:= | A2Invariant[Knot[10, 28]][q] |
Out[16]= | -10 -8 -6 2 -2 4 6 8 14 16 22 -1 - q + q + q - -- + q + 2 q + q + 3 q + q - 2 q - q 4 q |
In[17]:= | HOMFLYPT[Knot[10, 28]][a, z] |
Out[17]= | 2 2 2 4 4 -6 3 z z 4 z 2 2 4 z 2 z -1 - a + -- - -- + -- + ---- - a z + z + -- + ---- 2 6 4 2 4 2 a a a a a a |
In[18]:= | Kauffman[Knot[10, 28]][a, z] |
Out[18]= | 2 2 -6 3 4 z 6 z 2 z z 2 5 z 10 z 2 2 -1 + a - -- - --- - --- - --- + - + a z + 4 z - ---- + ----- - a z + 2 7 5 3 a 6 2 a a a a a a 3 3 3 3 4 4 8 z 18 z 13 z 2 z 3 3 3 4 12 z 11 z > ---- + ----- + ----- - ---- - 4 a z + a z - 8 z + ----- + ----- - 7 5 3 a 6 4 a a a a a 4 5 5 5 5 6 12 z 2 4 5 z 12 z 18 z 6 z 5 6 9 z > ----- + 3 a z - ---- - ----- - ----- - ---- + 5 a z + 6 z - ---- - 2 7 5 3 a 6 a a a a a 6 6 7 7 7 8 8 8 9 9 16 z z z 4 z 5 z 2 z 5 z 3 z z z > ----- - -- + -- + ---- + ---- + ---- + ---- + ---- + -- + -- 4 2 7 3 a 6 4 2 5 3 a a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 28]], Vassiliev[3][Knot[10, 28]]} |
Out[19]= | {3, 4} |
In[20]:= | Kh[Knot[10, 28]][q, t] |
Out[20]= | 4 1 2 1 3 2 3 3 2 - + 4 q + ----- + ----- + ----- + ---- + --- + 5 q t + 3 q t + 4 q t + q 7 3 5 2 3 2 3 q t q t q t q t q t 5 2 5 3 7 3 7 4 9 4 9 5 11 5 > 5 q t + 3 q t + 4 q t + 3 q t + 3 q t + q t + 3 q t + 11 6 13 6 15 7 > q t + q t + q t |
In[21]:= | ColouredJones[Knot[10, 28], 2][q] |
Out[21]= | -9 3 2 5 13 9 10 28 21 2 3 15 + q - -- + -- + -- - -- + -- + -- - -- + -- - 44 q + 29 q + 23 q - 8 7 6 5 4 3 2 q q q q q q q q 4 5 6 7 8 9 10 11 12 > 54 q + 26 q + 32 q - 53 q + 16 q + 34 q - 41 q + 4 q + 29 q - 13 14 15 16 17 18 19 20 21 > 24 q - 4 q + 18 q - 9 q - 5 q + 7 q - q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1028 |
|