© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.28
1028
10.30
1030
    10.29
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 1029   

Visit 1029's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 1029's page at Knotilus!

Acknowledgement

10.29
KnotPlot

PD Presentation: X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,16,6,17 X7,18,8,19 X13,1,14,20 X17,6,18,7 X19,15,20,14 X15,8,16,9

Gauss Code: {-1, 4, -3, 1, -5, 8, -6, 10, -2, 3, -4, 2, -7, 9, -10, 5, -8, 6, -9, 7}

DT (Dowker-Thistlethwaite) Code: 4 10 16 18 12 2 20 8 6 14

Minimum Braid Representative:


Length is 10, width is 5
Braid index is 5

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 2 3 2 / NotAvailable 1

Alexander Polynomial: t-3 - 7t-2 + 15t-1 - 17 + 15t - 7t2 + t3

Conway Polynomial: 1 - 4z2 - z4 + z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {63, -2}

Jones Polynomial: q-7 - 3q-6 + 6q-5 - 8q-4 + 10q-3 - 11q-2 + 9q-1 - 7 + 5q - 2q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-22 - q-18 + 2q-16 - q-14 + q-12 + q-10 - 2q-8 + q-6 - 3q-4 + q-2 - q2 + 2q4 + q8 + q10

HOMFLY-PT Polynomial: 2a-2 + a-2z2 - 2 - 5z2 - 2z4 + a2 + 3a2z2 + 3a2z4 + a2z6 - a4 - 4a4z2 - 2a4z4 + a6 + a6z2

Kauffman Polynomial: - 2a-2 + 5a-2z2 - 4a-2z4 + a-2z6 + 4a-1z3 - 6a-1z5 + 2a-1z7 - 2 + 6z2 - 4z4 - 3z6 + 2z8 + 2az + 2az3 - 8az5 + 2az7 + az9 - a2 + 3a2z4 - 9a2z6 + 5a2z8 + 7a3z3 - 12a3z5 + 5a3z7 + a3z9 - a4 + 4a4z2 - 5a4z4 + 3a4z8 - 2a5z + 6a5z3 - 7a5z5 + 5a5z7 - a6 + 4a6z2 - 7a6z4 + 5a6z6 - 3a7z3 + 3a7z5 - a8z2 + a8z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {-4, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1029. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7          1
j = 5         1 
j = 3        41 
j = 1       31  
j = -1      64   
j = -3     64    
j = -5    45     
j = -7   46      
j = -9  24       
j = -11 14        
j = -13 2         
j = -151          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-20 - 3q-19 + 2q-18 + 7q-17 - 16q-16 + 6q-15 + 24q-14 - 41q-13 + 10q-12 + 51q-11 - 70q-10 + 7q-9 + 77q-8 - 84q-7 - 3q-6 + 88q-5 - 74q-4 - 15q-3 + 77q-2 - 49q-1 - 22 + 52q - 22q2 - 19q3 + 25q4 - 5q5 - 9q6 + 7q7 - 2q9 + q10
3 q-39 - 3q-38 + 2q-37 + 3q-36 - q-35 - 10q-34 + 4q-33 + 19q-32 - 7q-31 - 34q-30 + 13q-29 + 54q-28 - 16q-27 - 91q-26 + 26q-25 + 131q-24 - 23q-23 - 190q-22 + 22q-21 + 244q-20 - 3q-19 - 301q-18 - 20q-17 + 343q-16 + 52q-15 - 368q-14 - 88q-13 + 377q-12 + 118q-11 - 357q-10 - 157q-9 + 335q-8 + 175q-7 - 288q-6 - 198q-5 + 239q-4 + 207q-3 - 183q-2 - 203q-1 + 123 + 195q - 76q2 - 163q3 + 26q4 + 136q5 - 2q6 - 92q7 - 22q8 + 66q9 + 18q10 - 32q11 - 21q12 + 19q13 + 11q14 - 6q15 - 8q16 + 4q17 + 2q18 - 2q20 + q21
4 q-64 - 3q-63 + 2q-62 + 3q-61 - 5q-60 + 5q-59 - 12q-58 + 10q-57 + 13q-56 - 22q-55 + 17q-54 - 37q-53 + 31q-52 + 41q-51 - 66q-50 + 28q-49 - 80q-48 + 98q-47 + 107q-46 - 165q-45 - 10q-44 - 164q-43 + 262q-42 + 291q-41 - 304q-40 - 186q-39 - 376q-38 + 518q-37 + 681q-36 - 368q-35 - 489q-34 - 803q-33 + 724q-32 + 1221q-31 - 234q-30 - 748q-29 - 1365q-28 + 727q-27 + 1677q-26 + 70q-25 - 785q-24 - 1842q-23 + 525q-22 + 1859q-21 + 386q-20 - 596q-19 - 2059q-18 + 226q-17 + 1739q-16 + 617q-15 - 271q-14 - 2014q-13 - 96q-12 + 1409q-11 + 759q-10 + 103q-9 - 1763q-8 - 399q-7 + 934q-6 + 794q-5 + 473q-4 - 1338q-3 - 603q-2 + 397q-1 + 663 + 726q - 795q2 - 601q3 - 51q4 + 371q5 + 736q6 - 296q7 - 390q8 - 252q9 + 65q10 + 514q11 - 10q12 - 133q13 - 214q14 - 87q15 + 243q16 + 49q17 + 7q18 - 93q19 - 84q20 + 76q21 + 19q22 + 28q23 - 21q24 - 37q25 + 19q26 + 11q28 - 2q29 - 10q30 + 5q31 - q32 + 2q33 - 2q35 + q36
5 q-95 - 3q-94 + 2q-93 + 3q-92 - 5q-91 + q-90 + 3q-89 - 6q-88 + 4q-87 + 9q-86 - 11q-85 - 5q-84 + 10q-83 - 6q-82 + 4q-81 + 8q-80 - 15q-79 - 12q-78 + 20q-77 + 25q-76 + 8q-75 - 27q-74 - 75q-73 - 43q-72 + 76q-71 + 171q-70 + 116q-69 - 122q-68 - 357q-67 - 281q-66 + 162q-65 + 622q-64 + 611q-63 - 107q-62 - 1031q-61 - 1136q-60 - 50q-59 + 1429q-58 + 1913q-57 + 510q-56 - 1887q-55 - 2910q-54 - 1174q-53 + 2131q-52 + 4036q-51 + 2232q-50 - 2213q-49 - 5189q-48 - 3455q-47 + 1943q-46 + 6181q-45 + 4861q-44 - 1413q-43 - 6914q-42 - 6190q-41 + 607q-40 + 7308q-39 + 7360q-38 + 307q-37 - 7347q-36 - 8229q-35 - 1247q-34 + 7081q-33 + 8769q-32 + 2119q-31 - 6598q-30 - 9014q-29 - 2807q-28 + 5943q-27 + 8930q-26 + 3455q-25 - 5218q-24 - 8715q-23 - 3877q-22 + 4389q-21 + 8238q-20 + 4338q-19 - 3485q-18 - 7732q-17 - 4637q-16 + 2507q-15 + 6977q-14 + 4945q-13 - 1433q-12 - 6139q-11 - 5102q-10 + 347q-9 + 5093q-8 + 5086q-7 + 731q-6 - 3894q-5 - 4871q-4 - 1660q-3 + 2644q-2 + 4333q-1 + 2354 - 1334q - 3618q2 - 2728q3 + 243q4 + 2639q5 + 2749q6 + 686q7 - 1706q8 - 2434q9 - 1192q10 + 744q11 + 1908q12 + 1457q13 - 103q14 - 1281q15 - 1304q16 - 414q17 + 697q18 + 1098q19 + 546q20 - 260q21 - 692q22 - 583q23 - 35q24 + 438q25 + 424q26 + 141q27 - 165q28 - 301q29 - 163q30 + 63q31 + 148q32 + 121q33 + 21q34 - 84q35 - 76q36 - 10q37 + 16q38 + 38q39 + 26q40 - 14q41 - 21q42 + q43 - 3q44 + 3q45 + 10q46 - 3q47 - 6q48 + 3q49 - q51 + 2q52 - 2q54 + q55
6 q-132 - 3q-131 + 2q-130 + 3q-129 - 5q-128 + q-127 - q-126 + 9q-125 - 12q-124 + 20q-122 - 22q-121 + 2q-120 + q-119 + 26q-118 - 36q-117 - 14q-116 + 63q-115 - 49q-114 + 9q-113 + 16q-112 + 70q-111 - 110q-110 - 77q-109 + 124q-108 - 103q-107 + 66q-106 + 118q-105 + 231q-104 - 239q-103 - 307q-102 + 43q-101 - 342q-100 + 183q-99 + 550q-98 + 884q-97 - 185q-96 - 796q-95 - 655q-94 - 1407q-93 - 3q-92 + 1556q-91 + 2903q-90 + 1043q-89 - 1080q-88 - 2479q-87 - 4661q-86 - 1906q-85 + 2578q-84 + 7147q-83 + 5377q-82 + 716q-81 - 4823q-80 - 11296q-79 - 7979q-78 + 1275q-77 + 12831q-76 + 14221q-75 + 7524q-74 - 4880q-73 - 20163q-72 - 19567q-71 - 5621q-70 + 16477q-69 + 25813q-68 + 20438q-67 + 876q-66 - 26973q-65 - 34047q-64 - 18799q-63 + 14147q-62 + 35048q-61 + 36024q-60 + 12768q-59 - 27459q-58 - 45630q-57 - 34179q-56 + 5647q-55 + 37547q-54 + 48210q-53 + 26481q-52 - 21564q-51 - 50120q-50 - 45872q-49 - 4901q-48 + 33526q-47 + 53348q-46 + 36742q-45 - 13117q-44 - 48038q-43 - 51036q-42 - 13171q-41 + 26526q-40 + 52353q-39 + 41640q-38 - 5554q-37 - 42551q-36 - 50983q-35 - 18181q-34 + 19232q-33 + 48068q-32 + 42782q-31 + 776q-30 - 35645q-29 - 48225q-28 - 21640q-27 + 11595q-26 + 41906q-25 + 42224q-24 + 7365q-23 - 26982q-22 - 43557q-21 - 24898q-20 + 2429q-19 + 33232q-18 + 39995q-17 + 14668q-16 - 15678q-15 - 35843q-14 - 26917q-13 - 7938q-12 + 21211q-11 + 34267q-10 + 20589q-9 - 2710q-8 - 24093q-7 - 24959q-6 - 16544q-5 + 7203q-4 + 23786q-3 + 21640q-2 + 8260q-1 - 9965 - 17457q - 19414q2 - 4643q3 + 10502q4 + 16223q5 + 12959q6 + 1941q7 - 6663q8 - 15174q9 - 9955q10 - 622q11 + 7067q12 + 10366q13 + 7294q14 + 2229q15 - 7113q16 - 8166q17 - 5462q18 - 468q19 + 4198q20 + 6044q21 + 5500q22 - 615q23 - 3265q24 - 4476q25 - 3139q26 - 477q27 + 2277q28 + 4090q29 + 1654q30 + 204q31 - 1621q32 - 2173q33 - 1721q34 - 164q35 + 1608q36 + 1116q37 + 989q38 + 48q39 - 618q40 - 1048q41 - 611q42 + 277q43 + 235q44 + 526q45 + 305q46 + 59q47 - 331q48 - 301q49 - 4q50 - 72q51 + 125q52 + 126q53 + 111q54 - 62q55 - 80q56 + 12q57 - 57q58 + 7q59 + 21q60 + 44q61 - 13q62 - 18q63 + 17q64 - 15q65 - 2q66 - q67 + 12q68 - 4q69 - 7q70 + 7q71 - 2q72 - q74 + 2q75 - 2q77 + q78
7 q-175 - 3q-174 + 2q-173 + 3q-172 - 5q-171 + q-170 - q-169 + 5q-168 + 3q-167 - 16q-166 + 11q-165 + 9q-164 - 15q-163 + 4q-162 - 7q-161 + 14q-160 + 11q-159 - 51q-158 + 27q-157 + 33q-156 - 20q-155 + 22q-154 - 40q-153 + 19q-152 + 14q-151 - 137q-150 + 44q-149 + 87q-148 + 30q-147 + 133q-146 - 68q-145 - 19q-144 - 56q-143 - 397q-142 - 47q-141 + 114q-140 + 238q-139 + 628q-138 + 195q-137 + 44q-136 - 327q-135 - 1241q-134 - 813q-133 - 346q-132 + 567q-131 + 2136q-130 + 1847q-129 + 1226q-128 - 474q-127 - 3443q-126 - 3922q-125 - 3198q-124 - 120q-123 + 5186q-122 + 7253q-121 + 6850q-120 + 2045q-119 - 6870q-118 - 12171q-117 - 13221q-116 - 6457q-115 + 7812q-114 + 18774q-113 + 23161q-112 + 14647q-111 - 6716q-110 - 26281q-109 - 37025q-108 - 28379q-107 + 1331q-106 + 33480q-105 + 55163q-104 + 48745q-103 + 9883q-102 - 38122q-101 - 75574q-100 - 76096q-99 - 29714q-98 + 37392q-97 + 96799q-96 + 109680q-95 + 58171q-94 - 28947q-93 - 114677q-92 - 146640q-91 - 95544q-90 + 10592q-89 + 126530q-88 + 183714q-87 + 138902q-86 + 17359q-85 - 129069q-84 - 216230q-83 - 184847q-82 - 53659q-81 + 121305q-80 + 240884q-79 + 228591q-78 + 94716q-77 - 103692q-76 - 255090q-75 - 266107q-74 - 136439q-73 + 78794q-72 + 258423q-71 + 294207q-70 + 174662q-69 - 49809q-68 - 252302q-67 - 311912q-66 - 206156q-65 + 20668q-64 + 239268q-63 + 319450q-62 + 229399q-61 + 5869q-60 - 222318q-59 - 318915q-58 - 244395q-57 - 28002q-56 + 204183q-55 + 312782q-54 + 252299q-53 + 45268q-52 - 186429q-51 - 303026q-50 - 255318q-49 - 59025q-48 + 169840q-47 + 292026q-46 + 255301q-45 + 69943q-44 - 153718q-43 - 279589q-42 - 254033q-41 - 80887q-40 + 137096q-39 + 266801q-38 + 252287q-37 + 92064q-36 - 118624q-35 - 251587q-34 - 250020q-33 - 105415q-32 + 96877q-31 + 233915q-30 + 246742q-29 + 119816q-28 - 71598q-27 - 211600q-26 - 240602q-25 - 135090q-24 + 42340q-23 + 184411q-22 + 230506q-21 + 148970q-20 - 10778q-19 - 151737q-18 - 214306q-17 - 159338q-16 - 21609q-15 + 114305q-14 + 191407q-13 + 163865q-12 + 51740q-11 - 74156q-10 - 161492q-9 - 160161q-8 - 76594q-7 + 33626q-6 + 125722q-5 + 147684q-4 + 93394q-3 + 3227q-2 - 86748q-1 - 126199 - 99851q - 33536q2 + 47860q3 + 98216q4 + 95720q5 + 53820q6 - 13172q7 - 66428q8 - 82056q9 - 63320q10 - 13940q11 + 35588q12 + 61750q13 + 61734q14 + 31293q15 - 8817q16 - 38786q17 - 52201q18 - 38328q19 - 10101q20 + 17144q21 + 37126q22 + 36591q23 + 21106q24 - 27q25 - 21549q26 - 29038q27 - 23600q28 - 10661q29 + 7512q30 + 18669q31 + 20924q32 + 15366q33 + 1811q34 - 9053q35 - 14688q36 - 14769q37 - 7013q38 + 1476q39 + 8330q40 + 11651q41 + 8050q42 + 2648q43 - 2908q44 - 7344q45 - 6869q46 - 4311q47 - 359q48 + 3768q49 + 4570q50 + 3969q51 + 1907q52 - 1214q53 - 2516q54 - 2889q55 - 2027q56 - 70q57 + 907q58 + 1675q59 + 1682q60 + 531q61 - 162q62 - 807q63 - 988q64 - 479q65 - 260q66 + 233q67 + 599q68 + 361q69 + 212q70 - 54q71 - 226q72 - 121q73 - 210q74 - 86q75 + 119q76 + 87q77 + 97q78 + 16q79 - 31q80 + 24q81 - 52q82 - 55q83 + 12q84 + 10q85 + 26q86 - q87 - 15q88 + 24q89 - 3q90 - 14q91 - q93 + 8q94 - 2q95 - 8q96 + 6q97 + 2q98 - 2q99 - q101 + 2q102 - 2q104 + q105


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 29]]
Out[2]=   
PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], 
 
>   X[5, 16, 6, 17], X[7, 18, 8, 19], X[13, 1, 14, 20], X[17, 6, 18, 7], 
 
>   X[19, 15, 20, 14], X[15, 8, 16, 9]]
In[3]:=
GaussCode[Knot[10, 29]]
Out[3]=   
GaussCode[-1, 4, -3, 1, -5, 8, -6, 10, -2, 3, -4, 2, -7, 9, -10, 5, -8, 6, -9, 
 
>   7]
In[4]:=
DTCode[Knot[10, 29]]
Out[4]=   
DTCode[4, 10, 16, 18, 12, 2, 20, 8, 6, 14]
In[5]:=
br = BR[Knot[10, 29]]
Out[5]=   
BR[5, {-1, -1, -1, 2, -1, -3, 2, 4, -3, 4}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{5, 10}
In[7]:=
BraidIndex[Knot[10, 29]]
Out[7]=   
5
In[8]:=
Show[DrawMorseLink[Knot[10, 29]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 29]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 2, 3, 2, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 29]][t]
Out[10]=   
       -3   7    15             2    3
-17 + t   - -- + -- + 15 t - 7 t  + t
             2   t
            t
In[11]:=
Conway[Knot[10, 29]][z]
Out[11]=   
       2    4    6
1 - 4 z  - z  + z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 29]}
In[13]:=
{KnotDet[Knot[10, 29]], KnotSignature[Knot[10, 29]]}
Out[13]=   
{63, -2}
In[14]:=
Jones[Knot[10, 29]][q]
Out[14]=   
      -7   3    6    8    10   11   9            2    3
-7 + q   - -- + -- - -- + -- - -- + - + 5 q - 2 q  + q
            6    5    4    3    2   q
           q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 29]}
In[16]:=
A2Invariant[Knot[10, 29]][q]
Out[16]=   
 -22    -18    2     -14    -12    -10   2     -6   3     -2    2      4    8
q    - q    + --- - q    + q    + q    - -- + q   - -- + q   - q  + 2 q  + q  + 
               16                         8          4
              q                          q          q
 
     10
>   q
In[17]:=
HOMFLYPT[Knot[10, 29]][a, z]
Out[17]=   
                                 2
     2     2    4    6      2   z       2  2      4  2    6  2      4
-2 + -- + a  - a  + a  - 5 z  + -- + 3 a  z  - 4 a  z  + a  z  - 2 z  + 
      2                          2
     a                          a
 
       2  4      4  4    2  6
>   3 a  z  - 2 a  z  + a  z
In[18]:=
Kauffman[Knot[10, 29]][a, z]
Out[18]=   
                                                    2
     2     2    4    6              5        2   5 z       4  2      6  2
-2 - -- - a  - a  - a  + 2 a z - 2 a  z + 6 z  + ---- + 4 a  z  + 4 a  z  - 
      2                                            2
     a                                            a
 
               3                                                    4
     8  2   4 z         3      3  3      5  3      7  3      4   4 z
>   a  z  + ---- + 2 a z  + 7 a  z  + 6 a  z  - 3 a  z  - 4 z  - ---- + 
             a                                                     2
                                                                  a
 
                                             5
       2  4      4  4      6  4    8  4   6 z         5       3  5      5  5
>   3 a  z  - 5 a  z  - 7 a  z  + a  z  - ---- - 8 a z  - 12 a  z  - 7 a  z  + 
                                           a
 
                      6                          7
       7  5      6   z       2  6      6  6   2 z         7      3  7
>   3 a  z  - 3 z  + -- - 9 a  z  + 5 a  z  + ---- + 2 a z  + 5 a  z  + 
                      2                        a
                     a
 
       5  7      8      2  8      4  8      9    3  9
>   5 a  z  + 2 z  + 5 a  z  + 3 a  z  + a z  + a  z
In[19]:=
{Vassiliev[2][Knot[10, 29]], Vassiliev[3][Knot[10, 29]]}
Out[19]=   
{-4, 3}
In[20]:=
Kh[Knot[10, 29]][q, t]
Out[20]=   
4    6     1        2        1        4        2       4       4       6
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  3    7  2
q        q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      4      5      6     4 t              2      3  2    3  3    5  3    7  4
>   ----- + ---- + ---- + --- + 3 q t + q t  + 4 q  t  + q  t  + q  t  + q  t
     5  2    5      3      q
    q  t    q  t   q  t
In[21]:=
ColouredJones[Knot[10, 29], 2][q]
Out[21]=   
       -20    3     2     7    16     6    24    41    10    51    70    7
-22 + q    - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + -- + 
              19    18    17    16    15    14    13    12    11    10    9
             q     q     q     q     q     q     q     q     q     q     q
 
    77   84   3    88   74   15   77   49              2       3       4
>   -- - -- - -- + -- - -- - -- + -- - -- + 52 q - 22 q  - 19 q  + 25 q  - 
     8    7    6    5    4    3    2   q
    q    q    q    q    q    q    q
 
       5      6      7      9    10
>   5 q  - 9 q  + 7 q  - 2 q  + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1029
10.28
1028
10.30
1030