© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1027Visit 1027's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1027's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X12,4,13,3 X20,13,1,14 X14,5,15,6 X6,19,7,20 X18,9,19,10 X16,7,17,8 X8,17,9,18 X10,15,11,16 X2,12,3,11 |
Gauss Code: | {1, -10, 2, -1, 4, -5, 7, -8, 6, -9, 10, -2, 3, -4, 9, -7, 8, -6, 5, -3} |
DT (Dowker-Thistlethwaite) Code: | 4 12 14 16 18 2 20 10 8 6 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 8t-2 + 16t-1 - 19 + 16t - 8t2 + 2t3 |
Conway Polynomial: | 1 + 2z2 + 4z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {71, -2} |
Jones Polynomial: | - q-8 + 3q-7 - 6q-6 + 9q-5 - 11q-4 + 12q-3 - 11q-2 + 9q-1 - 5 + 3q - q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-24 + q-22 - q-20 - q-18 + 2q-16 - 2q-14 + 2q-12 + 2q-6 - 2q-4 + 3q-2 + q4 - q6 |
HOMFLY-PT Polynomial: | - 2z2 - z4 + a2 + 3a2z2 + 3a2z4 + a2z6 + a4 + 3a4z2 + 3a4z4 + a4z6 - a6 - 2a6z2 - a6z4 |
Kauffman Polynomial: | - 2a-1z3 + a-1z5 + 4z2 - 7z4 + 3z6 - az + 5az3 - 8az5 + 4az7 - a2 + 4a2z2 - 3a2z4 - 2a2z6 + 3a2z8 - 2a3z + 11a3z3 - 14a3z5 + 6a3z7 + a3z9 + a4 - 4a4z2 + 7a4z4 - 9a4z6 + 6a4z8 - 2a5z + 7a5z3 - 12a5z5 + 6a5z7 + a5z9 + a6 - a6z2 - 3a6z4 - a6z6 + 3a6z8 + a7z3 - 6a7z5 + 4a7z7 + 3a8z2 - 6a8z4 + 3a8z6 + a9z - 2a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, -3} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1027. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - 3q-22 + q-21 + 9q-20 - 16q-19 - q-18 + 35q-17 - 39q-16 - 15q-15 + 77q-14 - 60q-13 - 41q-12 + 116q-11 - 66q-10 - 66q-9 + 131q-8 - 54q-7 - 75q-6 + 112q-5 - 30q-4 - 63q-3 + 70q-2 - 8q-1 - 37 + 30q + q2 - 15q3 + 8q4 + q5 - 3q6 + q7 |
3 | - q-45 + 3q-44 - q-43 - 4q-42 - 2q-41 + 13q-40 + 4q-39 - 26q-38 - 13q-37 + 47q-36 + 31q-35 - 72q-34 - 68q-33 + 105q-32 + 119q-31 - 130q-30 - 192q-29 + 145q-28 + 281q-27 - 147q-26 - 374q-25 + 128q-24 + 467q-23 - 95q-22 - 545q-21 + 47q-20 + 607q-19 + 3q-18 - 639q-17 - 59q-16 + 647q-15 + 107q-14 - 618q-13 - 158q-12 + 571q-11 + 188q-10 - 490q-9 - 217q-8 + 406q-7 + 214q-6 - 297q-5 - 216q-4 + 219q-3 + 177q-2 - 129q-1 - 150 + 79q + 105q2 - 35q3 - 73q4 + 16q5 + 43q6 - 5q7 - 24q8 + q9 + 12q10 - q11 - 4q12 - q13 + 3q14 - q15 |
4 | q-74 - 3q-73 + q-72 + 4q-71 - 3q-70 + 5q-69 - 16q-68 + 4q-67 + 22q-66 - 9q-65 + 16q-64 - 66q-63 + q-62 + 83q-61 + 7q-60 + 47q-59 - 209q-58 - 58q-57 + 200q-56 + 123q-55 + 184q-54 - 491q-53 - 304q-52 + 284q-51 + 409q-50 + 607q-49 - 810q-48 - 838q-47 + 103q-46 + 764q-45 + 1443q-44 - 906q-43 - 1549q-42 - 495q-41 + 935q-40 + 2535q-39 - 607q-38 - 2136q-37 - 1381q-36 + 761q-35 + 3532q-34 - 17q-33 - 2385q-32 - 2233q-31 + 323q-30 + 4140q-29 + 620q-28 - 2266q-27 - 2804q-26 - 218q-25 + 4250q-24 + 1141q-23 - 1838q-22 - 2991q-21 - 764q-20 + 3843q-19 + 1478q-18 - 1154q-17 - 2766q-16 - 1234q-15 + 2978q-14 + 1549q-13 - 357q-12 - 2140q-11 - 1471q-10 + 1853q-9 + 1289q-8 + 287q-7 - 1291q-6 - 1340q-5 + 846q-4 + 787q-3 + 539q-2 - 536q-1 - 913 + 244q + 306q2 + 440q3 - 112q4 - 462q5 + 36q6 + 44q7 + 228q8 + 16q9 - 178q10 + 8q11 - 21q12 + 82q13 + 19q14 - 56q15 + 9q16 - 14q17 + 21q18 + 7q19 - 15q20 + 4q21 - 3q22 + 4q23 + q24 - 3q25 + q26 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 27]] |
Out[2]= | PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[20, 13, 1, 14], X[14, 5, 15, 6], > X[6, 19, 7, 20], X[18, 9, 19, 10], X[16, 7, 17, 8], X[8, 17, 9, 18], > X[10, 15, 11, 16], X[2, 12, 3, 11]] |
In[3]:= | GaussCode[Knot[10, 27]] |
Out[3]= | GaussCode[1, -10, 2, -1, 4, -5, 7, -8, 6, -9, 10, -2, 3, -4, 9, -7, 8, -6, 5, > -3] |
In[4]:= | DTCode[Knot[10, 27]] |
Out[4]= | DTCode[4, 12, 14, 16, 18, 2, 20, 10, 8, 6] |
In[5]:= | br = BR[Knot[10, 27]] |
Out[5]= | BR[4, {-1, -1, -1, -1, -2, 1, -2, 3, -2, 3, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 27]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 27]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 27]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 27]][t] |
Out[10]= | 2 8 16 2 3 -19 + -- - -- + -- + 16 t - 8 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 27]][z] |
Out[11]= | 2 4 6 1 + 2 z + 4 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 27]} |
In[13]:= | {KnotDet[Knot[10, 27]], KnotSignature[Knot[10, 27]]} |
Out[13]= | {71, -2} |
In[14]:= | Jones[Knot[10, 27]][q] |
Out[14]= | -8 3 6 9 11 12 11 9 2 -5 - q + -- - -- + -- - -- + -- - -- + - + 3 q - q 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 27]} |
In[16]:= | A2Invariant[Knot[10, 27]][q] |
Out[16]= | -24 -22 -20 -18 2 2 2 2 2 3 4 6 -q + q - q - q + --- - --- + --- + -- - -- + -- + q - q 16 14 12 6 4 2 q q q q q q |
In[17]:= | HOMFLYPT[Knot[10, 27]][a, z] |
Out[17]= | 2 4 6 2 2 2 4 2 6 2 4 2 4 4 4 a + a - a - 2 z + 3 a z + 3 a z - 2 a z - z + 3 a z + 3 a z - 6 4 2 6 4 6 > a z + a z + a z |
In[18]:= | Kauffman[Knot[10, 27]][a, z] |
Out[18]= | 2 4 6 3 5 9 2 2 2 4 2 -a + a + a - a z - 2 a z - 2 a z + a z + 4 z + 4 a z - 4 a z - 3 6 2 8 2 2 z 3 3 3 5 3 7 3 9 3 > a z + 3 a z - ---- + 5 a z + 11 a z + 7 a z + a z - 2 a z - a 5 4 2 4 4 4 6 4 8 4 z 5 3 5 > 7 z - 3 a z + 7 a z - 3 a z - 6 a z + -- - 8 a z - 14 a z - a 5 5 7 5 9 5 6 2 6 4 6 6 6 8 6 > 12 a z - 6 a z + a z + 3 z - 2 a z - 9 a z - a z + 3 a z + 7 3 7 5 7 7 7 2 8 4 8 6 8 > 4 a z + 6 a z + 6 a z + 4 a z + 3 a z + 6 a z + 3 a z + 3 9 5 9 > a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 27]], Vassiliev[3][Knot[10, 27]]} |
Out[19]= | {2, -3} |
In[20]:= | Kh[Knot[10, 27]][q, t] |
Out[20]= | 4 6 1 2 1 4 2 5 4 6 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 9 3 q q t q t q t q t q t q t q t q t 5 6 6 5 6 2 t 2 3 2 5 3 > ----- + ----- + ----- + ---- + ---- + --- + 3 q t + q t + 2 q t + q t 7 3 7 2 5 2 5 3 q q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 27], 2][q] |
Out[21]= | -23 3 -21 9 16 -18 35 39 15 77 60 -37 + q - --- + q + --- - --- - q + --- - --- - --- + --- - --- - 22 20 19 17 16 15 14 13 q q q q q q q q 41 116 66 66 131 54 75 112 30 63 70 8 2 > --- + --- - --- - -- + --- - -- - -- + --- - -- - -- + -- - - + 30 q + q - 12 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q q 3 4 5 6 7 > 15 q + 8 q + q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1027 |
|